

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

THE EXTENSIBLE RUN-TIME INFRASTRUCTURE
(XRTI): AN EXPERIMENTAL IMPLEMENTATION OF
PROPOSED IMPROVEMENTS TO THE HIGH LEVEL

ARCHITECTURE

by

Andrzej Kapolka

December 2003

 Thesis Advisor: Michael Zyda
 Co-Advisor: Bret Michael

This thesis is done in cooperation with the MOVES Institute.
Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: The Extensible Run-Time Infrastructure
(XRTI): An Experimental Implementation of Proposed Improvements to the High
Level Architecture
6. AUTHOR(S) Andrzej Kapolka

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The establishment of a large-scale network of persistent shared virtual worlds depends on the presence of a robust

standard for communicating state information between the applications that host and provide access to those worlds. The High
Level Architecture (HLA) can serve as the basis for such a standard, but not before several of its shortcomings are resolved.
First, it must be made easier to use. Second, it must specify a standardizable message protocol. Third, it must support dynamic
object model extension and composition. Finally, its authors must provide an open-source, freely redistributable run-time
infrastructure.

This thesis documents the creation of the Extensible Run-Time Infrastructure (XRTI), an experimental platform that
addresses the above requirements while retaining full backwards compatibility with the existing HLA standard. To increase
ease-of-use, the XRTI provides a proxy compiler that generates customized sets of Java™ source files based on the contents of
arbitrary Federation Object Model Document Data (FDDs). To encourage message protocol standardization, the XRTI uses a
novel bootstrapping methodology to define its low-level interactions in terms of an HLA object model. The XRTI supports the
dynamic composition and extension of such object models through its Reflection Object Model (ROM), and this thesis
demonstrates that ability by depicting the integration of the XRTI into NPSNET-V, a dynamically extensible platform for
virtual environment applications.

15. NUMBER OF
PAGES

133

14. SUBJECT TERMS HIGH LEVEL ARCHITECTURE, HLA, RUN-TIME
INFRASTRUCTURE, RTI, NPSNET, NETWORKED VIRTUAL ENVIRONMENTS, NETWORK
PROTOCOLS, MIDDLEWARE, OPEN-SOURCE, JAVA, DYNAMIC EXTENSIBILITY, CODE
GENERATION, INTEROPERABILITY, DISTRIBUTED SIMULATION 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

THE EXTENSIBLE RUN-TIME INFRASTRUCTURE (XRTI): AN
EXPERIMENTAL IMPLEMENTATION OF PROPOSED IMPROVEMENTS TO

THE HIGH LEVEL ARCHITECTURE

Andrzej Kapolka
Research Associate, Naval Postgraduate School

B.S., University of California at Santa Cruz, December 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
MODELING, VIRTUAL ENVIRONMENTS AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
December 2003

Author: Andrzej Kapolka

Approved by: Michael Zyda

Thesis Advisor

Bret Michael
Co-Advisor

Rudy Darken
Chairman, MOVES Curriculum Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The establishment of a large-scale network of persistent shared virtual worlds

depends on the presence of a robust standard for communicating state information

between the applications that host and provide access to those worlds. The High Level

Architecture (HLA) can serve as the basis for such a standard, but not before several of

its shortcomings are resolved. First, it must be made easier to use. Second, it must

specify a standardizable message protocol. Third, it must support dynamic object model

extension and composition. Finally, its authors must provide an open-source, freely

redistributable run-time infrastructure.

This thesis documents the creation of the Extensible Run-Time Infrastructure

(XRTI), an experimental platform that addresses the above requirements while retaining

full backwards compatibility with the existing HLA standard. To increase ease-of-use,

the XRTI provides a proxy compiler that generates customized sets of Java™ source files

based on the contents of arbitrary Federation Object Model Document Data (FDDs). To

encourage message protocol standardization, the XRTI uses a novel bootstrapping

methodology to define its low-level interactions in terms of an HLA object model. The

XRTI supports the dynamic composition and extension of such object models through its

Reflection Object Model (ROM), and this thesis demonstrates that ability by depicting

the integration of the XRTI into NPSNET-V, a dynamically extensible platform for

virtual environment applications.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. BACKGROUND ..3
C. PROBLEM STATEMENT ...4
D. PREVIOUS WORK...5

1. Heavyweight Fixed Protocols..5
2. Composable Micro-Protocols..5
3. Generic Protocols ...6
4. Middleware Solutions ..6

a. CORBA..7
b. HLA ...7

E. OBJECTIVES ..9
F. SCOPE ..10
G. EXPERIMENT ..11

1. Hypothesis...11
2. Test Method..11

H. THESIS ORGANIZATION..11

II. HIGH-LEVEL DESIGN ...13
A. DESIGN STRATEGY ...13
B. IMPLEMENTATION PLATFORM ...13
C. STANDARDS COMPLIANCE ..14
D. STANDARDS EXTENSION ..14
E. NETWORKING CONSIDERATIONS ...17

1. Topology..17
2. Message Channels ..19

F. BOOTSTRAPPING METHODOLOGY...19
G. HANDLES ..20
H. OBJECT MODELS ...21

1. Bootstrap Object Model ..21
2. Meta-Federation Object Model ..21
3. Reflection Object Model..22

I. SOFTWARE COMPONENTS...23
1. Proxy Compiler ..23
2. XRTI Ambassador ...23
3. XRTI Executive..24

III. LOW-LEVEL DESIGN AND IMPLEMENTATION: OBJECT MODELS.......27
A. OBJECT MODEL TABLES...27
B. BOOTSTRAP OBJECT MODEL..28
C. META-FEDERATION OBJECT MODEL ..35
D. REFLECTION OBJECT MODEL..40

 viii

IV. LOW-LEVEL DESIGN AND IMPLEMENTATION: SOFTWARE
COMPONENTS...51
A. PROXY COMPILER ..51

1. Type Mappings...51
2. Encoding Streams ..53
3. Parameters..54
4. Output Files ..55

a. Data Types ...55
b. Proxy Ambassador ..56
c. Interfaces...58
d. Object Instance Proxies ..59

B. XRTI AMBASSADOR ..60
1. Message Channels ..61
2. Message Flow..62
3. Obtaining Handles ...64
4. Service Mappings ...64
5. Descriptor Manager...65

C. XRTI EXECUTIVE...66
1. Message Channel Acceptors..67
2. Executive Client Ambassador...67
3. Federation Execution Ambassador ..68

V. INTEGRATION INTO NPSNET-V ..71
A. PLATFORM OVERVIEW...71

1. Component Framework ..72
a. Module Life Cycle ...72
b. Interface Layer..73
c. Configuration and Serialization...73
d. Bootstrapping and Extension ...74

2. Entity Model ...75
a. Models..76
b. Views..76
c. Controllers...77
d. Scaffolds ..77

3. Application Structure ..78
a. Test Applications ...78
b. Browser Environment ...78

B. HLA CONTROLLERS ...79
1. HLAControllerCore ..80
2. HLAController...80
3. HLAPlatformController..81

C. XRTI CONTROLLERS..81
1. XRTIControllerCore ...81
2. XRTIController..82
3. XRTIPlatformController ..83

D. INTEGRATION SUMMARY ..83

 ix

VI. TESTING..85
A. TEST APPLICATIONS ..85

1. HelloWorld ...85
2. HelloWorldEx...86

B. THESIS EXPERIMENT...88
1. Overview ...88
2. Setup..88

a. Hardware...88
b. Software...88
c. Procedure ..90

3. Hypothesis...92
4. Results ...92
5. Analysis ...95

VII. CONCLUSION ..97
A. PROJECT SUMMARY...97
B. FUTURE WORK...99

1. Widening Conversions...99
2. Extensible FOMs in NPSNET-V ..100
3. Supporting the Complete HLA Standard......................................101

a. Ownership Management...101
b. Time Management ..101
c. Data Distribution Management..102
d. Other Services ...103

4. RTI Verification...104
5. Proposing Extensions to the HLA Community104
6. Porting/Binding to Other Languages ...105
7. Integrating Additional Networking Profiles..................................105

a. Hybrid ..105
b. Peer-to-Peer...106

C. OBTAINING THE XRTI..107
1. Packaging..107
2. Distribution...107
3. Licensing ...107
4. Development ...108

APPENDIX A. GLOSSARY..109

LIST OF REFERENCES..111

INITIAL DISTRIBUTION LIST ...115

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Two ways to merge separate classes..15
Figure 2. The signature of the mergeFDD method. ...16
Figure 3. Example RTI network topologies. ...18
Figure 4. Sample output from the HelloWorld test application.86
Figure 5. Sample output from the HelloWorldEx test application.............................87
Figure 6. Graph of average frame rates...93
Figure 7. Graph of average interaction latencies...93
Figure 8. Graph of average network transfer rates..94
Figure 9. Graph of times spent in emitEntityState method.95
Figure 10. Widening and narrowing casts in Java...99
Figure 11. The BSD license as included with the XRTI. ..108

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. XRTI message format. ...20
Table 2. BOM interaction class structure table..30
Table 3. BOM parameter table...31
Table 4. BOM simple datatype table. ..32
Table 5. BOM array datatype table..32
Table 6. BOM fixed record datatype table...33
Table 7. BOM interaction class definitions table...34
Table 8. BOM parameter definitions table...34
Table 9. MFOM object class structure table. ...35
Table 10. MFOM interaction class structure table...36
Table 11. MFOM attribute table. ...37
Table 12. MFOM parameter table..37
Table 13. MFOM simple datatype table. ...38
Table 14. MFOM object class definitions table...38
Table 15. MFOM interaction class definitions table..39
Table 16. MFOM attribute definitions table. ...39
Table 17. MFOM parameter definitions table. ..39
Table 18. ROM object class structure table. ..41
Table 19. ROM interaction class structure table..41
Table 20. ROM attribute table. ..42
Table 21. ROM attribute table (continued)..43
Table 22. ROM attribute table (continued)..44
Table 23. ROM parameter table...44
Table 24. ROM simple datatype table. ..45
Table 25. ROM enumerated datatype table. ..45
Table 26. ROM array datatype table..46
Table 27. ROM fixed record datatype table...47
Table 28. ROM object class definitions table. ...48
Table 29. ROM interaction class definitions table...48
Table 30. ROM attribute definitions table. ..49
Table 31. ROM attribute definitions table (continued)..50
Table 32. ROM parameter definitions table...50
Table 33. Mappings between HLA basic representations and Java data types................52
Table 34. Mappings between HLA simple types and Java data types.............................52
Table 35. Mappings between HLA enumerated types and Java data types.53
Table 36. Mappings between HLA array types and Java data types.53
Table 37. Proxy compiler parameters. ...54
Table 38. Service mappings. ..65
Table 39. Results of the thesis experiment. ...92

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

The author would like to acknowledge the help of his thesis advisors, Mike Zyda

and Bret Michael. Particular thanks are due to Professor Zyda for giving the author the

opportunity to complete his master’s degree while working as a researcher and staff

member at the MOVES Institute. In his time at MOVES, the author has had the pleasure

of working closely with a number of dedicated and talented students: Major William D.

Fischer, USA; LT James Harney, USN; LCDR Ernesto J. Salles, USN; LTJG Ekrem

Serin, Turkish Navy; Major David B. Washington, USA; and LT Michael S. Wathen,

USN. To these students, as well as to Don McGregor, Mike Capps, and the entire faculty

and staff of the MOVES Institute, the author extends his deepest thanks. Finally, the

author would like to thank his family—Gerry, Daphne, Basia, and Marek Kapolka—for

their love and support.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OVERVIEW

Virtual environment researchers, science-fiction authors, simulation developers,

and video game players share a common dream: the existence of an always-on, globally

connected, infinitely expandable network of virtual worlds. Ideally, this network would

subsume all types of virtual environments currently available without inheriting their

limitations. The worlds of such a network could be used for social interaction, but they

would share neither the superficial level of interactivity nor the impermanence of three-

dimensional chat worlds such as Adobe Atmosphere [Adobe 03]. They could be used for

gaming, but they would not be subject to the limited scalability of first-person shooting

games such as America’s Army: Operations [America’s Army 03], nor to the

monopolistic control exercised by the hosts of massively multiplayer online role-playing

games such as EverQuest [Sony 03]. The worlds could support large-scale, long-running

simulations without requiring the enormous number of man-hours expended by the

military simulation community in constructing and maintaining heterogeneous High

Level Architecture (HLA) federations such as the one built for Millennium Challenge

2002 [USJFCOM 03]. They would form the perfect setting for virtual environment

research, for they would be as robust and enduring as current research environments are

brittle and short-lived.

To those who would attempt it, the establishment of such a network presents an

intimidating challenge: the creation of a set of standards that would formalize certain

aspects of virtual environment applications without limiting their overall functionality.

These standards would have to be general enough to apply to all existing types of

environments, flexible enough to accommodate new types of environments, evolvable

enough to allow for extension and improvement over time, and simple and well-specified

enough to encourage widespread adoption. The standards on which the World Wide Web

is based—the Hyper-Text Transport Protocol (HTTP) and the Hyper-Text Markup

Language (HTML)—provide an excellent example of how to achieve the kind of

universality and flexibility required. As with those associated with the World Wide Web,

 2

a generalized set of standards for virtual environments is likely to include at least two

categories: formats for static data representation, like HTML, and protocols for dynamic

data interchange, like HTTP. This thesis concerns the development of a standard of the

second category: a mechanism for transmitting dynamic state information between virtual

environment applications.

The most promising basis for such a standard is the HLA, a standardized

middleware interface specifically designed for distributed simulations [IEEE 1516, Kuhl

99]. The HLA is well specified and fully generalized, but it is limited in a number of

respects. First, it is difficult to use. In order to make their applications communicate

with others using the HLA, developers must obtain handles for object attributes and

interaction parameters, register their ability to receive certain types of interactions and to

discover certain types of objects, manually encode and decode variables to and from byte

arrays, track shared object state, and respond to management requests. Second, the HLA

does not specify a common message protocol. This means that run-time infrastructures

(RTIs: implementations of the HLA interface standard) developed by different

organizations—and even different versions of the same RTI—cannot typically

interoperate. Third, once a federation execution has begun, the HLA does not support

modification of the object model associated with that federation. It is therefore

impossible to introduce new classes of objects or interactions into an active federation.

Finally, there are no open-source RTIs. Developers cannot simply download an RTI for

free and modify it to meet their specific needs, nor can they easily include an RTI with

their open-source applications.

This thesis, therefore, introduces the Extensible Run-Time Infrastructure (XRTI):

an open-source, freely redistributable RTI with experimental extensions that address the

concerns above. To increase ease-of-use, the XRTI includes a proxy compiler that

generates sets of Java™ source files based on the contents of arbitrary FOM Document

Data (FDDs). Developers may use these autogenerated proxy classes as an intuitive,

type-safe means to interact with the federation. To encourage message protocol

standardization, the XRTI uses a bootstrapping methodology to define its low-level

interactions in terms of an HLA object model. The encoding schemes specified by the

 3

HLA standard provide the foundation for the Bootstrap Object Model (BOM), which

defines the XRTI’s message protocol much as the Management Object Model (MOM)

describes the HLA’s service interfaces. Likewise, the XRTI’s Reflection Object Model

(ROM) represents the object model of an active federation. By manipulating the ROM,

federates may introduce new object and interaction classes without interrupting the

federation execution. This thesis demonstrates that ability by incorporating support for

XRTI networking into NPSNET-V, a component-based virtual environment platform

[Capps 00]. Once the integration is complete, this thesis compares the performance of

the XRTI to that of two widely available closed-source RTIs in the context of a typical

NPSNET-V application.

B. BACKGROUND

NPSNET-V is a dynamically extensible platform for shared virtual worlds.

Applications hosted within the NPSNET-V framework consist of hierarchies of

dynamically loaded, loosely coupled modules rooted at an invariant microkernel

[Kapolka 02]. Modules may be added to or removed from the framework at any time,

and loaded modules may be hot-swapped—that is, seamlessly upgraded or otherwise

replaced with new modules. The NPSNET-V distribution includes modules that provide

system-level functionality, such as resource management, as well as modules specific to

virtual environment applications, such as modules that represent virtual entities.

NPSNET-V’s entity model is based on the Model-View-Controller design pattern, which

requires that the model, or the abstract state of an entity, be separated from its views, the

modules that present the entity’s state to the user, and from its controllers, the modules

that manipulate the entity’s state. View modules included with NPSNET-V include those

that depict entity state textually and those that represent entities graphically in two or

three dimensions. NPSNET-V’s controller modules support the modification of entity

state in response to user input, according to simulated physical behavior, and in reflection

of updates transmitted by other applications over the network.

The extensible nature of NPSNET-V incurs a unique requirement upon the

network controller modules that transfer entity state between applications. Because new

types of entities may be loaded at any time and because those entities may require the

 4

transfer of new types of state data, the communications mechanisms used by NPSNET-V

must themselves support dynamic extension. The first version of NPSNET-V used a set

of composable micro-protocols to achieve this ability. Each micro-protocol module

transmitted or interpreted a single entity state element: for example, an entity’s position

or its animation parameters. Creating and maintaining these modules required a

significant amount of developer effort, however, and the micro-protocol strategy, which

was tightly integrated into the NPSNET-V kernel, prevented NPSNET-V from

networking with applications that used standards such as the Distributed Interactive

Simulation (DIS) protocol [IEEE 1278]. The next version of NPSNET-V included a set

of DIS controller modules in order to allow NPSNET-V to interoperate with preexisting

applications. Unfortunately, the applicability of the DIS protocol is limited to a narrow

application domain—that of platform-level military simulations—and while the DIS

protocol does support limited extensibility, the extension mechanism is primitive and

awkward. Thesis student Ekrem Serin integrated support for his Cross-Format Schema

Protocol (XFSP) [Serin 03] into NPSNET-V, allowing developers to define custom

binary protocols using XML Schema, but because of the XFSP support library’s

inefficient approach to data representation, manipulation, and encoding, use of the XFSP

significantly reduced the performance of the applications in which it was tested. As a

demonstration of NPSNET-V’s versatility, its developers also created rudimentary HLA

controller modules that relied on the Real-Time Platform Reference Federation Object

Model (RPR-FOM), a federation object model (FOM) that describes an ontology

equivalent to that of the DIS protocol. As its name suggests, the RPR-FOM serves as a

reference model for platform-level simulations that developers may extend as needed.

Unfortunately for the purposes of NPSNET-V, however, this extension may not occur

while the simulation is running.

C. PROBLEM STATEMENT

At present, there exists no communications mechanism for networked virtual

environments that is generalizable enough to support any kind of environment; usable

enough to encourage widespread adoption; standardizable enough to allow universal

interoperability, or the ability to facilitate communication between any group of virtual

 5

environment applications; and adaptable enough to permit run-time extension of its

ontology. The HLA, while fully generalized, is difficult to use, provides no standardized

message protocol, and does not permit modification of its object models during the

course of a federation execution. Also, there are currently no open-source HLA RTIs

available for widespread use.

D. PREVIOUS WORK

In the brief history of networked virtual environments, developers have used

many different techniques to share state information between applications. These

techniques can be divided into four categories: heavyweight fixed protocols, composable

micro-protocols, generic protocols, and middleware solutions.

1. Heavyweight Fixed Protocols

The most basic means of sharing state information involves the definition and use

of a fixed network protocol that provides explicit, byte-by-byte descriptions of every type

of message that may be exchanged between participating applications. The Multicast

VRML Interchange Protocol (MVIP), for instance, is a simple fixed protocol that defines

eight types of messages [Robinson 00]. MVIP is specifically tailored to the requirements

of applications based on Internet Protocol (IP) multicast technology and the Virtual

Reality Modeling Language (VRML). Similarly, the DIS protocol is designed for use in

platform-level military simulations: combat scenarios involving warships, tanks, and

fighter planes. In general, the usefulness of heavyweight fixed protocols is limited to the

application domains for which they were designed.

2. Composable Micro-Protocols

When a single fixed protocol does not address all of an application’s

communication requirements, the developers of the application may choose to use

multiple protocols simultaneously. The composable micro-protocol strategy takes this

approach to its logical extreme: the usage of a unique protocol for each separable aspect

of communication. Such micro-protocols may be combined in stack or graph

arrangements in order to allow application developers to define complex messaging

behavior in terms of simple building blocks. For example, the output of a protocol

 6

module that generates packets for transmission may be connected to the input of a filter

module that compresses the packets. The output of that module may in turn be connected

to the input of a filter that encrypts the compressed packets, and finally to an endpoint

module that transmits the compressed, encrypted packets to a multicast channel. As

demonstrated by the TreacleWell system [Oliveira 02], the composable micro-protocol

strategy allows dynamically extensible applications to extend their communication

languages by inserting new modules into their micro-protocol frameworks. This form of

extensibility is difficult to standardize, however, as doing so would depend not only on

the standardization of the micro-protocols themselves, but also on the manner by which

they were combined and configured.

3. Generic Protocols

An alternate approach to achieving extensible communication is the usage of

generic protocols, or meta-protocols, that allow developers to specify protocol syntax at

run-time. The Dynamic Behavior Protocol (DBP), for instance, relies on documents

conforming to an ad-hoc Extensible Markup Language (XML) format to describe packets

in terms of a number of named, typed fields [Fischer 01]. The Cross-Format Schema

Protocol (XFSP) provides a significantly improved encoding mechanism based on XML

Schema [Serin 03]. Using either DBP or XFSP, applications may effect protocol

extension by modifying and redistributing the protocol document. Supporting in-band

protocol modifications requires the definition of a management layer to supplement the

basic protocol encodings. If established, standards for encoding algorithms and

management functionality would likely be complex, preventing most application

developers from implementing them from scratch.

4. Middleware Solutions

Middleware solutions provide application programming interface (API) level

standards for communication. Recognizing that any sufficiently complicated networking

mechanism is best provided in the form of a third-party library, middleware standards

ensure that applications may interact with such libraries interchangeably. The Common

 7

Object Request Broker Architecture (CORBA) [Bolton 02] and the HLA are two

middleware standards particularly relevant to networked virtual environments.

a. CORBA

CORBA provides applications with the ability to invoke object methods

across network boundaries in a language and platform independent manner. Developers

use Interface Definition Language (IDL) documents to describe the publicly accessible

methods of CORBA-aware objects. From these documents, IDL compilers generate stub

and skeleton source files that map native language features to Object Request Broker

(ORB) interactions. ORBs—implementations of the CORBA interface standard—use the

Internet Inter-ORB Protocol (IIOP) to send and receive encoded requests and responses

over the Internet. In addition to IDL and IIOP, the CORBA standard formalizes a

number of services, such as a naming service and an event service, that simplify the

development of CORBA-based distributed systems.

Researchers have successfully developed virtual environment systems

based on CORBA [Louis Dit Picard 01, Wilson 01], although traditional CORBA is not

an ideal technology for that purpose. Traditional CORBA interactions are based on a

connection-oriented request-response model: a single application locates a single object

at a single remote host, transmits an encoded method call, and waits for a response

containing the return value. Real-time and multicast CORBA improve on that model by

supporting the connectionless publish-subscribe paradigm favored by developers of

networked virtual environments and distributed simulations.

b. HLA

The HLA is a middleware solution that is specifically designed to meet the

needs of the distributed simulation community. It is based on a publish-subscribe model:

network participants, or federates, send all messages to the federation, or network, at

large, and receive only the messages specified by their subscription parameters. There

are two basic types of messages: interactions and object attribute updates. Interactions

are roughly equivalent to global method calls; they contain sets of named, typed

parameters, and are not associated with objects. Object attribute updates convey changed

 8

state. The HLA allows networked applications to define FOMs that represent the nature

of their shared state in terms of a number of object classes with named, typed attributes.

Each attribute may be owned by only one federate at any given time, and only the owner

of an attribute may update its value. The RTI is the middleware implementation. To

ensure consistency, RTIs must support the federate interface described in the HLA

standard [IEEE 1516.1].

The RTI interface is thorough, but it is not easy for application developers

to use. In order to send an object attribute update, for instance, an application must first

obtain a handle to the object, then obtain a handle to the attribute, then encode the

attribute value into a byte array, then create a mapping object and use it to map the

attribute handle to the encoded value, and finally invoke the RTI’s

updateAttributeValues method with the object handle and the mapping object as

parameters. Many developers have attempted to increase the HLA’s ease-of-use, either

by creating proxy compilers that generate source code based on the contents of FDDs

[Cox 98, Hunt 99] or by building object-oriented frameworks on top of the RTI [Cazard

02, Dumond 01], but these approaches have not been standardized.

Another shortcoming of the HLA standard is its lack of a specification for

RTI interoperability. RTIs provided by different vendors, and even different versions of

the same RTI, cannot typically exchange information with one another. By preventing

simulation developers from easily connecting their simulations to others over the Internet,

this leads to fragmentation of the HLA community. The most commonly recommended

solution to this problem is the establishment of a common message protocol, and indeed

researchers have designed such protocols and recommended them for standardization

[Mullally 03, Myjak 99]. Others, however, have objected that the requirement to use

such a protocol would severely limit the freedom of implementation currently enjoyed by

RTI developers [Granowetter 03]. Another approach to RTI interoperability requires the

use of bridges: applications that connect to two or more RTIs and translate messages

between them. Enabling interoperation between N RTIs requires O(N²) bridges in the

worst case (creating a bridge from every RTI to every other RTI) or O(N) bridges in the

best case (creating N front-ends and N back-ends to an intermediate bridge). This

 9

requirement, along with the extra effort required on the part of the end user to find and

install the necessary bridges, clearly eliminates HLA-with-bridging as a candidate

technology for allowing universal interoperability between virtual environment

applications.

Researchers have successfully used the HLA in networked virtual

environment applications, but not without some difficulty [Blümel 02, Brassé 00].

Developers have even integrated HLA support into a dynamically extensible virtual

environment framework, but not in such a way as to allow dynamically extensible

messaging [Liles 98]. The problem is that once a federation execution is in progress, the

HLA does not allow federates to modify the FOM in order to introduce new object or

interaction classes. For applications based on platforms such as NPSNET-V, where

newly loaded software modules may require changes to the communication ontology, this

restriction prevents the HLA from acting as a complete solution to the state transference

problem.

Aside from its technical limitations, one of the principal impediments to

widespread acceptance of the HLA is the lack of a free, open-source RTI [Givens 00].

Military simulation centers may not balk at the prospect of licensing their RTIs from

commercial companies, but virtual environment researchers and game developers tend to

prefer software that they can freely examine, modify, and redistribute. If an open-source

RTI were available, it could serve as a reference implementation of the standard and

provide a test bed for experimental extensions and enhancements.

E. OBJECTIVES

The objectives of the XRTI project are to create and demonstrate a set of

extensions to the HLA standard that resolve several of its shortcomings; to provide

NPSNET-V with a middleware-based networking solution that is easy-to-use,

standardizable, and amenable to dynamic extension; and to deliver a freely redistributable

open-source RTI to the modeling and simulation community.

 10

F. SCOPE

The thesis project encompasses the design and implementation of the XRTI, its

integration into NPSNET-V, and a series of tests comparing its performance to that of

two closed-source RTIs within the context of a typical NPSNET-V application. In order

to limit the complexity of the initial version of the XRTI, the author has narrowed the

thesis scope by omitting support for several HLA services—ownership management,

time management, and data distribution management—and by restricting the XRTI to

operation in a client-server network topology. These limitations do not affect the

immediate usefulness of the XRTI for NPSNET-V applications, however, because

current virtual worlds based on NPSNET-V operate in real-time, and are small and short-

lived.

The products of thesis project include the HLA extension interfaces and the

modified object model template (OMT) DTD; the proxy compiler; the XRTI

Ambassador; the XRTI Executive; the Bootstrap, Meta-Federation, and Reflection Object

Models; the NPSNET-V XRTI controller modules; and the thesis document. The HLA

extension interfaces define recommended additions to the standard HLA RTI interfaces,

while the modified OMT DTD describes recommended changes to the OMT XML

format. The proxy compiler reads FDDs in XML form and generates sets of Java™

source files that the developer may use to interact with the RTI in an intuitive, type-safe

manner. The XRTI Ambassador is the central class of the XRTI: the class through which

federates (or their proxy classes) perform fundamental operations such as sending

interactions and updating attribute values. The XRTI Executive is the server application

to which federates must connect when participating in federation executions. The

Bootstrap, Meta-Federation, and Reflection Object Models are the object models used for

low-level communication, multi-federation management, and object model

representation, respectively, much as the Management Object Model defined in the HLA

standard is the object model used for management of a single federation. The NPSNET-

V XRTI controller modules provide support for transferring entity state between

NPSNET-V applications using the XRTI. The thesis document provides a complete

description of the design, implementation, integration, and testing of the XRTI.

 11

G. EXPERIMENT

1. Hypothesis

The hypothesis of the thesis experiment states that the XRTI can provide a small

virtual world with a communications framework that maintains a level of performance

comparable to that of commercially available RTIs. For this thesis, the relevant measures

of performance are graphical frame rate, central processing unit (CPU) usage,

communication latency, and network traffic volume.

2. Test Method

To test the hypothesis, the author executes three trials within a simple

environment installed on several computers connected by a local area network (LAN). In

each trial, a small number of entities follow sets of scripted paths. The first and second

trials use NPSNET-V’s existing HLA controller modules in conjunction with different

closed-source, commercial RTIs. The third trial uses the XRTI and the XRTI controller

modules. For each trial, the author uses specially developed code to determine the

average frame rate and communication latency, and external tools to measure CPU usage

and network traffic volume.

H. THESIS ORGANIZATION

 The thesis document contains the following chapters:

• Chapter I: Introduction. Provides an overview of the thesis project, a

summary of the project’s background, a statement of the problem that the

thesis addresses, a description of the related work that the thesis builds upon,

an explanation of the thesis objectives, a definition of the thesis project’s

scope, a description of the thesis experiment, a list of the deliverables

associated with the project, and a chapter-by-chapter outline of the thesis

document.

• Chapter II: High-Level Design. Explains the high-level strategy behind the

XRTI’s design; describes the technologies selected by the author to implement

and test the XRTI; explains the XRTI’s conformance to and divergence from

 12

the HLA standard; documents the XRTI’s networking model, bootstrapping

methodology, and usage of unique integer handles; and provides a coarse-

grained overview of the XRTI’s object models and software components.

• Chapter III: Low-Level Design and Implementation: Object Models.

Documents the creation of the Bootstrap, Meta-Federation, and Reflection

Object Models, providing tabular object model descriptions conforming to the

format used by the authors of the IEEE 1516.1 standard to describe the MOM.

• Chapter IV: Low-Level Design and Implementation: Software Components.

Depicts the design and implementation of the proxy compiler, XRTI

Ambassador, and XRTI Executive.

• Chapter V: Integration into NPSNET-V. Provides a brief overview of the

NPSNET-V platform and documents the creation of a set of NPSNET-V

controller modules that use the XRTI to share entity state information between

networked virtual environment applications.

• Chapter VI: Testing. Describes the simple test applications used to verify the

XRTI’s functionality and documents the thesis experiment, which compares

the performance of the XRTI to that of two widely available closed-source

RTIs in the context of a typical NPSNET-V shared virtual world.

• Chapter VII: Conclusion. Summarizes the results of the project and compares

them to the requirements stated in the introduction, notes the shortcomings of

the XRTI and lists opportunities for future enhancement, and provides the

reader with the information necessary to obtain the XRTI software from the

World Wide Web.

 13

II. HIGH-LEVEL DESIGN

A. DESIGN STRATEGY

The XRTI’s design reflects a consistent strategy that emphasizes simplicity,

versatility, and maintainability. The first part of the strategy requires that the XRTI use

HLA constructs, as well as its own enhancements to the HLA, to as great an extent as

possible in the implementation of its underlying mechanisms. This requirement ensures

that the XRTI’s design minimizes redundancy, credibly validates the HLA standard, and

allows developers familiar with the external interface of the XRTI to understand its

internals as well. The second part of the strategy dictates that the XRTI should begin as a

minimal working prototype, but that its development should spiral outwards over time to

incorporate new features as XRTI users request them. The third and final part of the

strategy states that as this expansion occurs, the XRTI should support a growing number

of profiles, or modes of operation tailored to specific sets of requirements. The initial

XRTI prototype documented in this thesis can be thought of as the first profile: a simple

client-server configuration suitable for small-scale, Internet-based shared environments.

Future profiles will support peer-to-peer and hybrid topologies as well as advanced HLA

services such as time management and data distribution management.

B. IMPLEMENTATION PLATFORM

The XRTI is written in Java, built using the Ant tool, and documented using the

Javadoc utility. Using the Java Virtual Machine (JVM) as the XRTI’s execution platform

ensures that it will run unmodified under almost any operating system (OS). The Java

language also provides a rich API that covers all categories of functionality required by

the XRTI, including threading, data processing, and networking. The Ant tool

complements the Java environment by allowing developers to create cross-platform build

mechanisms. Unlike typical make files, which must execute OS-specific binaries to

perform special tasks, Ant scripts can invoke custom tasks implemented as Java classes.

Ant also includes a number of built-in tasks for common operations such as compiling

Java classes, manipulating files and directories, and running the Javadoc utility. Javadoc

 14

generates HTML documentation based on specially formatted comments embedded in

Java source files. This is particularly useful for the XRTI, because it allows automatic

documentation of the classes and interfaces generated by the proxy compiler.

C. STANDARDS COMPLIANCE

Aside from its omission of support for ownership management, time management,

and data distribution management, the XRTI is fully compliant with the IEEE 1516,

1516.1, and 1516.2 standards. This means that it follows the rules listed in IEEE 1516,

that it provides the Java RTI interface specified in IEEE 1516.1, and that it accepts object

models conforming to the template described by IEEE 1516.2. Future versions of the

XRTI will support the full HLA standard, and thus will be candidates for official

certification.

D. STANDARDS EXTENSION

The XRTI also supports several proposed extensions to the HLA standard. The

first is a modified OMT that allows multiple inheritance relationships between object and

interaction classes. Multiple inheritance is crucial to dynamically extensible applications

because it allows federates to merge classes occupying different regions of the

inheritance hierarchy. Consider an object class, Tank, and another class,

RadarVisible, that is not an ancestor of Tank. A federate wishes to create a new

class: a radar-visible tank. In a traditional HLA federation, this change would require a

“FOM-fest” in which the federation is taken offline, the FOM rewritten so that all Tanks

are RadarVisible, the federates updated to reflect the change, and the federation

execution restarted. In an XRTI federation, the federate can create the new class without

interrupting the federation execution, but only if the two classes can be tied together

without changing their ancestry.

Figure 1. Two ways to merge separate classes. On the left, an offline FOM-fest
restructures the inheritance hierarchy. On the right, dynamic FOM extension combines

the existing classes using multiple inheritance.

The necessary changes to the OMT can best be expressed as revisions to the

document type definition (DTD) contained in section C.2 of IEEE 1516.2. In order to

indicate that the DTD defines a revised OMT, the fixed value of the DTDversion attribute

of the objectModel element changes from “1516.2” to “1516.2ex.” The objectClass and

interactionClass elements gain new attributes, parents and parentsNotes, both

#IMPLIED and of type NMTOKENS. The value of the parents attribute, if present,

contains the names of all parents of the object or interaction class other than the direct

parent—that is, the parent implicitly specified by nesting objectClass or interactionClass

elements. The parentsNotes attribute allows object model authors to link the value of the

parents attribute with notes defined at the bottom of the FDD.

The second extension adds a single method to the RTI interface in order to allow

federates to extend and compose FOMs during the course of a federation execution. In

the standard HLA model, the FOM of the execution is fixed when the first federate calls

the createFederationExecution method, specifying the name of the execution

and the location of the FDD as parameters. The XRTI adds a new method, mergeFDD,

which any federate can invoke at any time (except during a save or restore operation) to

 15

 16

merge the contents of another FDD into the execution’s FOM. This extension to the

HLA standard not only allows federates to introduce new classes of objects and

interactions into their executions, but also encourages the use of lightweight, composable

object models. Traditionally, all HLA FOMs must include the complete Management

Object Model (MOM), a special object model defined by the HLA standard. This makes

even the simplest FDDs thousands of lines long. Under the XRTI, federates can specify

an FDD containing only the MOM as the initial FDD, then merge smaller FDDs into the

FOM as needed. In fact, since the MOM is a mandatory component of every FOM, the

XRTI automatically merges it into the FDD of every execution created.

In order to indicate its status as an extension method, the XRTI defines

mergeFDD in a new interface, hla.rti.extensions.RTIambassadorEx,

which inherits from hla.rti.RTIambassador, the RTI ambassador interface

defined in IEEE 1516.1. The documented signature of the method is as follows.

/**
 * Merges the object model contained in the specified federation
 * description document with the current federation object model.
 *
 * @param fdd the location of the federation description document
 * @exception CouldNotOpenFDD if the federation description
 * document could not be opened
 * @exception ErrorReadingFDD if an error occurred while reading
 * the federation description document
 * @exception RTIinternalError if an internal error occurred in
 * the run-time infrastructure
 */
public void mergeFDD(URL fdd)
 throws CouldNotOpenFDD,
 ErrorReadingFDD,
 FederateNotExecutionMember,
 SaveInProgress,
 RestoreInProgress,
 RTIinternalError;

Figure 2. The signature of the mergeFDD method.

The other proposed extensions take the form of standardizable object models

which, like the MOM, are accessible to federates but are also used by the XRTI itself.

The first of these is the Bootstrap Object Model (BOM), which describes the message

protocol payload in terms of HLA data types and defines the most basic interactions, such

as HLAupdateAttributeValues. The second is the Meta-Federation Object Model

(MFOM). Upon initialization, the XRTI Ambassador automatically joins a meta-

 17

federation that consists of all participants in the communication channel that its

configuration has instructed it to use. That meta-federation’s FOM is the MFOM, which

contains interactions like HLAcreateFederationExecution. The third special

object model is the Reflection Object Model (ROM), which contains object classes such

as HLAobjectClass and HLAdataType. The XRTI uses the constructs contained in

the ROM to represent the FOMs of federation executions. When a federate merges a new

FDD into the FOM of its execution, the XRTI creates and/or modifies ROM-defined

objects to reflect and announce the change.

E. NETWORKING CONSIDERATIONS

Because the XRTI is a distributed system, as opposed to a standalone application

or middleware library, its design must include the manner in which its components

connect and communicate over the network. The two primary aspects of networking to

consider are those of topology and message channels.

1. Topology

Perhaps the most important consideration in any distributed environment is that of

the network topology, which determines the connections between components. Most

distributed simulation topologies fall into one of three categories: client-server, peer-to-

peer, or a hybrid of client-server and peer-to-peer [Singhal 99]. In client-server

topologies, a server component accepts messages from and distributes updates to a group

of clients that can only communicate with each other through the server. This

arrangement is well-suited to HLA simulations, because the functionality that the HLA

expects of the RTI—coordinating global save and restore operations, filtering messages

based on subscription parameters—suggests the use of a central point of control and

mediation. However, pure client-server topologies suffer from limited scalability,

because handling a flood of messages from a large number of clients can easily

overwhelm a server, and non-optimal latency, because the updates sent by each client

must travel first to the server, then to the other clients. For these reasons, RTIs often

employ hybrid topologies in which federates rely on a central server, known as an

executive, to act as a persistent control node and a means of distributing messages

reliably, but also use IP multicast groups to transmit messages directly between

themselves. Because IP multicast offers low latency and high scalability at the cost of

guaranteed message delivery, this approach works well for a common class of

simulations: those that require frequent unreliable state updates and occasional reliable

management operations.

Figure 3. Example RTI network topologies. Solid lines represent reliable message

channels; dashed lines represent low-latency, unreliable channels. The hybrid topology
uses IP multicast for unreliable state updates and the executive for reliable management

operations and central federation control.

Unfortunately, because Internet routers typically do not allow IP multicast traffic

to escape the local area network (LAN), it is impractical to deploy multicast-based

applications on the Internet. The first version of the XRTI therefore uses a pure client-

server topology in which federates only communicate with one another through the XRTI

Executive, a server application. It is important, however, that future versions of the

XRTI be able to support different topologies. For example, if IP multicast gains Internet-

wide acceptance, the XRTI must grow to accommodate peer-to-peer and/or hybrid

topologies based on multicast groups in order to allow more scalable federations.

Supporting different networking configurations in the same communications standard

suggests the development of profiles, or selectable modes of communication. The HLA

can define each profile in part through the constructs defined by that profile’s BOM. A

 18

 19

BOM that supports peer-to-peer topologies based on IP multicast, for instance, must

implement its own reliable multicast protocol by adding sequence numbers to messages

and defining retransmission request interactions. The initial BOM, which represents a

client-server profile, simplifies matters by assuming that a reliable message channel

exists between each federate and the executive.

2. Message Channels

The nature of the message channels through which components communicate is

the other networking consideration that the XRTI’s design must address. The standard

Internet channels are well-known and well-defined, and include unicast Transmission

Control Protocol (TCP) connections and User Datagram Protocol (UDP) channels in both

unicast and multicast configurations. TCP offers reliable, in-order message delivery at

the cost of increased latency, whereas UDP offers low-latency messaging without

guaranteeing delivery or order of receipt. In the first version of the XRTI, federates

maintain two channels to the executive: a TCP channel for reliable communication and a

UDP channel for unreliable messaging. Future versions of the XRTI must be able to

support channels other than the standard TCP and UDP options, however, just as they

must support different topologies. For example, simulation developers may wish to use

overlay multicast, which mimics the functionality of IP multicast by performing

application-layer routing, to build large-scale federations in a multicast-hostile Internet.

To do this, they must be able to have the XRTI use message channels provided by their

custom libraries instead of its default TCP or UDP channels. The XRTI supports this

ability by allowing applications to supply channels as Java classes derived from an

abstract base class, much as the Java API allows developers to implement custom

protocol handlers by extending URLStreamHandler [Maso 00].

F. BOOTSTRAPPING METHODOLOGY

The XRTI’s bootstrapping methodology allows it to define most of its low-level

messaging and management operations in terms of HLA encodings and constructs. The

bootstrap process begins with the format of the messages transmitted between XRTI

components over the network. XRTI messages consist of a 32-bit protocol identifier

 20

whose value is the same for each version of the XRTI; a 32-bit version number whose

value—a 16-bit major version followed by a 16-bit minor version—is equal to the

version number of the BOM; and a payload whose format is described by the BOM’s

HLAbootstrapInteractionPayload fixed record type. The following table describes the

layout of these fields.

Field offset (bytes) Description Contents

0 Protocol identifier 0xFEEDAFED
4 Version number 0x00010000
8 Message payload HLAbootstrapInteractionPayload

Table 1. XRTI message format.

As the name of the HLAbootstrapInteractionPayload type suggests, each XRTI

message represents an HLA interaction. Small, simple interactions can be encoded

directly as messages, while larger, more complex interactions must be transmitted within

wrapper interactions, such as HLAinteractionFragment, defined in the BOM. Similarly,

operations such as updating attribute values must be expressed in terms of the BOM’s

basic interaction classes. Along with the BOM, the MOM, MFOM and ROM each

represent different aspects of the XRTI’s internal communication ontology. In order for

the XRTI to take advantage of the proxy compiler’s ability to generate Java code based

on FDDs, the XRTI’s compilation consists of two phases. In the first phase, Ant

compiles the proxy compiler. Then Ant uses the proxy compiler to generate Java proxies

corresponding to the contents of the BOM, MOM, MFOM, and ROM. In the second

compilation phase, Ant compiles the autogenerated proxies along with the rest of the

XRTI.

G. HANDLES

The HLA standard does not explicitly specify a format for the handles that

identify object and interaction classes, object instances, and federates, among other

things, in the context of RTI messaging. The MOM treats all handles as opaque byte

arrays, and the API defined by IEEE 1516.1 requires that RTIs represent handles as type-

safe objects that do not expose their underlying representations. However, the RTI

 21

ambassador specification includes a method, normalizeFederateHandle, that requires the

ability to convert federate handles into a normalized representation: a 64-bit integer. For

simplicity and consistency, the XRTI therefore uses 64-bit integers for all handles. The

XRTI Executive generates unique handles and assigns them to federates as necessary.

Handle values can serve more than one role; for instance, the value of an object class

handle is simply the value of the object instance handle for that class’s reflective

HLAobjectClass instance.

H. OBJECT MODELS

1. Bootstrap Object Model

The BOM contains the most basic, fundamental elements of the XRTI’s

communication ontology. Its HLAbootstrapInteractionPayload data type defines the

format of the XRTI message payload. The BOM also defines the

HLAinteractionFragment interaction class in order to allow clients to transmit oversized

interactions as sequences of interaction fragments. The HLArequestHandles interaction

allows federates to obtain blocks of unique handles from the XRTI Executive, which

must respond using HLAreportHandles, for use as object instance identifiers. Once they

possess these identifiers, federates can use the BOM’s HLAregisterObjectInstance

interaction to announce the creation of new shared objects. The corresponding

HLAdeleteObjectInstance interaction is defined in the MOM, as are publication and

subscription services such as HLApublishObjectClassAttributes and

HLAsubscribeObjectClassAttributes. To announce changes in the state of the attributes

that they have published, federates must use the BOM’s HLAupdateAttributeValues

family of interactions. This family includes variants for attributes with both reliable and

best-effort transportation: HLAupdateAttributeValuesReliable and

HLAupdateAttributeValuesBestEffort. These interaction classes and the others defined in

the BOM derive from an organizational base class, HLAbootstrap.

2. Meta-Federation Object Model

The MFOM supplements the MOM by providing a management layer outside of

any single federation execution. Federates join the meta-federation implicitly when they

 22

initialize their XRTI Ambassadors. The MFOM contains the

HLAcreateFederationExecution interaction class, which federates use to create federation

executions; the HLAjoinFederationExecution class, with which federates join federation

executions; and the HLAdestroyFederationExecution class, which federates use to

destroy federation executions. To leave a federation execution, federates must invoke the

HLAleaveFederationExecution interaction, which is defined by the MOM. Instances of

the MFOM’s HLAfederationExecution object class represent active federation

executions. All of the MFOM’s interaction classes are children of its

HLAmetaFederation interaction class. Similarly, the HLAmetaFederation object class

acts as a base class for HLAfederationExecution.

3. Reflection Object Model

The ROM is the most straightforward of the XRTI’s three core object models. It

describes a number of classes based directly on elements of the Object Model Template

(OMT). Where the OMT defines an objectClass element, for instance, the ROM defines

an HLAobjectClass object class. That object class contains as its attributes the same

information that the OMT requires objectClass elements to contain: the name of the

object class, its parent classes, its English-language semantics, and its defined attributes.

Within the XRTI, instances of ROM-defined classes like HLAobjectClass and

HLAinteractionClass represent living, mutable aspects of the FOM. When an XRTI

client modifies the attributes attribute of an HLAobjectClass, for example, it is changing

the list of attributes supported by instances of the described class. For indirect FOM

extension, the ROM defines the HLAmergeFDD interaction class. The primary object

classes of the ROM are children of a common base class, HLAreflection, and include

HLAobjectClass, HLAinteractionClass, HLAdimension, HLAsynchronization,

HLAtransportation, and HLAdataType. The HLAmergeFDD interaction class inherits

from the base interaction class HLAreflection.

 23

I. SOFTWARE COMPONENTS

1. Proxy Compiler

The proxy compiler, which is both a standalone Java application and an Ant task,

converts XML FDDs into sets of Java source files representing proxy classes and

interfaces. The compiler begins by mapping simple types to appropriate Java

equivalents. For example, the HLAboolean type maps naturally to the Java boolean type.

The compiler then generates Java classes for enumerated types, fixed record types, and

variant record types. Each class includes constructors, accessors, mutators, serialization

and deserialization methods, and debugging methods as necessary. Next, the compiler

creates a proxy ambassador class and an interaction listener interface. Clients use

instances of the proxy ambassador class to send and receive the interactions described in

the FDD, as well as to create and manage proxy objects. For each object class defined in

the FDD, the proxy compiler must generate three Java source files: an object interface, a

listener interface, and a proxy class. This is necessary because of the XRTI’s support for

multiple inheritance relationships between object classes. Java classes may implement an

arbitrary number of interfaces, but they may have only one direct parent class. The proxy

compiler therefore derives each child proxy class from the proxy class of the direct parent

(identified by the objectClass element that encloses the child element in the FDD) and

ensures that the child proxy implements the object interfaces of its other parents. This

strategy allows clients to use Java’s instanceof operator to identify object proxy types in

terms of the classes defined in the FDD.

2. XRTI Ambassador

Each federate participating in an XRTI federation execution must maintain an

instance of the XRTI Ambassador as its interface to the federation. The methods that the

XRTI Ambassador must support are strictly defined by the IEEE 1516 standard, with the

exception of the XRTI’s new mergeFDD method. Typical XRTI federates, however,

invoke few of those methods directly. Instead, they interact with their autogenerated

proxy classes, which in turn manipulate the cumbersome interface of the XRTI

Ambassador. Upon initialization, the XRTI Ambassador creates a connection to the

 24

XRTI Executive and implicitly joins the meta-federation. At that point, the federate can

call the ambassador’s createFederationExecution, destroyFederationExecution, and

joinFederationExecution methods. Creating a federation execution involves uploading

an FDD to the XRTI Executive so that the executive can create the set of reflection

objects that represent the FOM. Once the federate has joined a federation, it can use the

mergeFDD method to add the contents of other FDDs to the FOM. The federate should

also report its publication and subscription information to the executive, allowing the

executive to filter the interactions and object state changes that it relays to the federate. If

the federate has objects of its own, it can use the registerObjectInstance method to

announce their presence to the executive, the updateAttributeValues method to announce

changes in their state, and the deleteObjectInstance method to signal their removal. The

federate can also use the sendInteraction method to transmit published interactions.

Message transmission is asynchronous; as soon as the XRTI Ambassador receives a

message from the XRTI Executive, it relays it to the federate through the

FederateAmbassador interface. When the federate must leave the federation execution, it

calls the ambassador’s resignFederationExecution method. After resigning, the federate

is returned to the meta-federation. It is only when the finalizeRTI method is called that

the ambassador severs its link to the XRTI Executive.

3. XRTI Executive

Each federation execution hosted by the current version of the XRTI must be

managed by an instance of the XRTI Executive, a standalone application that acts as a

central server. After initialization, the XRTI Executive waits for incoming connections

from remote instances of the XRTI Ambassador. For each connection created, the XRTI

Executive spawns a new thread to handle communication with the remote client. If the

client requests a block of handles, the executive responds with a block of the requested

size. If the client requests the creation of a federation execution, the executive creates the

execution and initializes the reflection objects that represent its FOM based on the initial

FDD provided by the federate. In addition to these reflection objects, the executive must

maintain other types of information over the lifetime of the federation execution. The

executive must keep track of each joined federate’s subscription information, as well as

 25

the object instances that each federate has created. The executive must also respond to

the service requests defined in the MOM, such as HLArequestPublications and

HLArequestSubscriptions. The executive should be able to handle any number of

federation executions simultaneously, within the constraints of available bandwidth and

processing power.

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

III. LOW-LEVEL DESIGN AND IMPLEMENTATION: OBJECT
MODELS

A. OBJECT MODEL TABLES

In order to completely and precisely describe the object models associated with

the XRTI, this chapter includes tabular representations based on those used by the authors

of IEEE 1516.1 to present the Management Object Model (MOM). Each set of object

model tables begins with object and/or interaction class structure tables that depict

inheritance relationships between classes. The P, S, PS, or N flag that follows each class

name indicates that federates can publish, subscribe, publish and subscribe, or neither

publish nor subscribe, respectively, instances of the class. The next tables describe object

attributes and interaction parameters. Attribute tables list the name, data type, update

type, update condition, ownership transfer capability, publication and subscription

capability, available dimensions, transportation, and order type of each attribute of every

object class. Update types include Static, indicating that the attribute value does not

change after initialization; Conditional, indicating that the attribute value changes on the

specified update condition; and Periodic, indicating that the attribute’s owner updates its

value at regular intervals. An ownership transfer capability is one of D, A, DA, or N,

respectively indicating that federates can divest, acquire, divest and acquire, or neither

divest nor acquire, ownership of the attribute. Transportation is either HLAreliable or

HLAbestEffort, and order is either Receive or TimeStamp. Parameter tables list the name,

data type, available dimensions, transportation, and order type of each interaction

parameter.

Because the XRTI relies on the MOM as well as the object models described in

this chapter, the tables that follow reference types contained in the MOM, such as

HLAopaqueData, without defining them. The set of tables that describe other data types

begins with the simple data type table, which lists the name, representation, units,

resolution, accuracy, and semantics of each simple data type. Next comes the

enumerated data type table, which lists the name, representation, and semantics of each

enumerated type, as well as the name and values of each one of that type’s enumerators.

 28

The array data type table similarly lists the name, element type, cardinality, encoding,

and semantics of each array type. The cardinality can either be a fixed integer or

Dynamic, indicating an array of variable length. The HLAvariableArray encoding is

defined in the HLA standard, allowing federates to exchange encoded array data reliably.

The fixed record data type table follows the array table, and contains the name, fields,

encoding, and semantics of each fixed record type. Each field has a name, a data type,

and its own semantics. Like HLAvariableArray, the HLAfixedRecord encoding defines

an exact mapping from a live data structure to its serialized representation. The final set

of object model tables provide semantics for each object class, interaction class, object

class attribute, and interaction class parameter.

B. BOOTSTRAP OBJECT MODEL

The BOM contains the most basic of the XRTI’s communication constructs. It

defines the HLAbootstrapInteractionPayload fixed record type, for instance, which

represents the payload of each message sent between distributed XRTI components.

HLAbootstrapInteractionPayload contains four fields: the handle of the federation

execution with which the message is associated, an uninterpreted user-supplied tag, the

handle of the interaction class of which the message represents an instance, and a list of

pairings between interaction parameter handles and their associated values.

The BOM also defines a number of fundamental interaction classes. The first of

these is HLAinteractionFragment, which XRTI components use to send large interactions

through best-effort channels that limit message sizes. Each interaction fragment contains

four parameters: an interaction number that distinguishes fragments of one interaction

from those of others, the total size of the fragmented interaction, the offset of the

fragment, and the contents of the fragment. To send a fragmented interaction, XRTI

components encode the interaction into a byte array and transmit a series of

HLAinteractionFragment messages, each containing a portion of the array with a length

underneath the message channel’s size threshold. Upon receiving an interaction

fragment, XRTI components create a buffer of the indicated size and begin to collect

subsequent fragments. When the entire buffer is filled, the component decodes and

 29

processes the interaction. If the component receives a fragment with a different

interaction number before the buffer is filled, it discards all previously received

fragments and starts over.

The HLArequestHandles and HLAreportHandles interaction classes allow

federates to acquire blocks of contiguous unique identifiers from the XRTI Executive.

Federates send the HLArequestHandles interaction to obtain a block of handles, using the

blockSize parameter to indicate the number of handles desired. The XRTI Executive

responds with the HLAreportHandles interaction, which relays the first handle of the

block and the total number of handles acquired. Once the federate has acquired a series

of handles, it can use them in interactions such as HLAregisterObjectInstance.

HLAregisterObjectInstance announces the presence of a new shared object to the XRTI

Executive, taking as its parameters the name of the object, its instance handle, and its

class handle.

Federates use the HLArequestAttributeValueUpdate interaction to request that

other federates transmit updated attribute values. The parameters of

HLArequestAttributeValueUpdate are the instance handle of the object of interest and a

list of handles identifying the attribute values desired. To announce updated attribute

values, federates use either HLAupdateAttributeValuesReliable or

HLAupdateAttributeValuesBestEffort, depending on the transportation of the attributes

being updated. Both classes include as parameters the instance handle of the object with

which the attributes are associated and a list of attribute handle/value pairs.

 30

HLAinteractionFragment (PS)

HLArequestHandles (PS)

HLAreportHandles (PS)

HLAregisterObjectInstance (PS)

HLArequestAttributeValueUpdat
e (PS)

HLAupdateAttributeValuesR
eliable (PS)

HLAinteractionRoot
(N)

HLAbootstrap
(N)

HLAupdateAttributeValues (N)
HLAupdateAttributeValuesB
estEffort (PS)

Table 2. BOM interaction class structure table.

Interaction Parameter Datatype Available
dimensions Transportation Order

HLAinteractionRoot HLAbootstrap NA NA NA HLAreliable Receive

interactionNumber HLAinteraction-
SequenceNumber

interactionSize HLAbufferSize
fragmentOffset HLAbufferOffset

HLAinteractionFragment

fragmentContents

HLAopaqueData

NA HLAreliable Receive

HLArequestHandles blockSize HLAhandleBlockSize NA HLAreliable Receive
blockStart HLAnormalizedHandleHLAreportHandles
blockSize

HLAhandleBlockSize

NA HLAreliable Receive

objectName HLAunicodeString
objectInstanceHandle HLAnormalizedHandleHLAregisterObjectInstance

objectClassHandle

HLAnormalizedHandle
NA HLAreliable Receive

objectInstanceHandle HLAnormalizedHandleHLArequest-
AttributeValueUpdate attributeHandleList

HLAattributeHandleList

NA HLAreliable Receive

objectInstanceHandle HLAnormalizedHandle

HLAbootstrap

HLAupdateAttributeValues
attributeHandleValuePairList HLAattributeHandle-

ValuePairList
NA HLAreliable Receive

HLAupdateAttribute-
ValuesBestEffort NA NA NA HLAbestEffort Receive

HLAupdate-
AttributeValues HLAupdateAttribute-

ValuesReliable NA NA NA HLAreliable Receive

Table 3. BOM parameter table.

 31

 32

Name Representation Units Resolution Accuracy Semantics

HLAnormalizedHandle HLAinteger64BE NA NA
A

normalized
handle.

HLAhandleBlockSize HLAinteger64BE handles NA NA
The size of
a block of
handles.

HLAinteractionSequenceNumber HLAinteger32BE NA NA

An
interaction
sequence
number.

HLAbufferSize HLAinteger32BE bytes NA NA A data
buffer size.

HLAbufferOffset HLAinteger32BE bytes NA NA
An data
buffer
offset.

Table 4. BOM simple datatype table.

Name Element Type Cardinality Encoding Semantics

HLAparameterHandle-
ValuePairList

HLAparameterHandle-
ValuePair Dynamic HLAvariableArray

A list of
parameter

handle/value
pairs.

HLAattributeHandle-
ValuePairList

HLAattributeHandle-
ValuePair Dynamic HLAvariableArray

A list of
attribute

handle/value
pairs.

HLAattributeHandleList HLAnormalizedHandle Dynamic HLAvariableArray
A list of
attribute
handles.

Table 5. BOM array datatype table.

Field

Record name
Name

Type Semantics

Encoding Semantics

federationExecutionHandle HLAnormalizedHandle
Federation
execution
handle.

userSuppliedTag HLAopaqueData

User-
supplied tag
associated
with the

interaction.

interactionClassHandle HLAnormalizedHandle Interaction
class handle.

HLAbootstrapInteractionPayload

parameterHandleValuePairList HLAparameterHandleValuePairList

List of
parameter

handle/value
pairs.

HLAfixedRecord
The payload of
the bootstrap
interaction.

parameterHandle HLAnormalizedHandle Parameter
handle. HLAparameterHandleValuePair

value HLAopaqueData Encoded
value.

HLAfixedRecord

Pairs a
parameter

handle with an
encoded value.

attributeHandle HLAnormalizedHandle Attribute
handle. HLAattributeHandleValuePair

value HLAopaqueData Encoded
value.

HLAfixedRecord

Pairs an
attribute

handle with an
encoded value.

Table 6. BOM fixed record datatype table.

 33

Interaction Definition
HLAbootstrap Root class of BOM interactions.

HLAinteractionFragment A piece of a fragmented interaction.
HLArequestHandles Requests a block of handles.
HLAreportHandles Reports a block of handles.

HLAregisterObjectInstance Registers a new object instance.
HLArequestAttributeValueUpdate Requests an attribute value update.

HLAbootstrap

HLAupdateAttributeValues Updates a set of attribute values.
HLAupdateAttributeValuesBestEffort Updates a set of attribute values with best-effort transportation and receive

ordering.
HLAupdateAttributeValues

HLAupdateAttributeValuesReliable Updates a set of attribute values with reliable transportation and receive ordering.

Table 7. BOM interaction class definitions table.

Class Parameter Definition
interactionNumber The sequence number of the fragmented interaction.

interactionSize The size of the fragmented interaction.
fragmentOffset The offset of this fragment in the buffer.

HLAinteractionFragment

fragmentContents The contents of the fragment.
HLArequestHandles blockSize The number of handles desired.

blockStart The first handle in the block. HLAreportHandles
blockSize The number of handles in the block.

objectName The name of the object.
objectInstanceHandle The object instance handle

HLAregisterObjectInstance

objectClassHandle The object class handle.
objectInstanceHandle Object instance handle. HLArequestAttributeValueUpdate
attributeHandleList List of attribute handles.

objectInstanceHandle Object instance handle.

HLAbootstrap

HLAupdateAttributeValues
attributeHandleValuePairList List of attribute handle/value pairs.

Table 8. BOM parameter definitions table.

 34

 35

C. META-FEDERATION OBJECT MODEL

The MFOM defines the object and interaction classes of the meta-federation: the

federation execution that federates join implicitly by initializing their XRTI Ambassador

instances and connecting to the XRTI Executive. The meta-federation acts as a sort of

lobby, allowing federates to browse all federation executions maintained by the XRTI

Executive, and to create, join, and destroy executions. Instances of the

HLAfederationExecution object class, maintained by the executive, represent active

federation executions. Each execution must have a unique name, represented by the

name attribute. To create executions, federates invoke the

HLAcreateFederationExecution interaction, providing a name and an encoded FDD as

parameters. Upon receiving HLAcreateFederationExecution, the executive creates a new

execution with the specified name, initializes its reflection objects to reflect the content of

the transmitted FDD, and creates a new instance of HLAfederationExecution in the meta-

federation. At that point, federates can send HLAjoinFederationExecution to join the

execution. HLAjoinFederationExecution takes as its parameters the name of the

execution to join, the type of the federate, and the federate’s handle. Federates use their

federate handles primarily to identify themselves in the interactions defined by the MOM,

such as HLAresignFederationExecution. After resigning from an execution, federates

return to the meta-federation, where they can create and join other executions, or invoke

HLAdestroyFederationExecution to destroy executions.

HLAobjectRoot (N) HLAmetaFederation (N) HLAfederationExecution (PS)

Table 9. MFOM object class structure table.

 36

HLAcreateFederationExecution (PS)

HLAjoinFederationExecution (PS) HLAinteractionRoot (N) HLAmetaFederation (N)

HLAdestroyFederationExecution (PS)

Table 10. MFOM interaction class structure table.

Object Attribute Datatype Update
type

 Update
condition

T/A P/S Available
dimensions

Transportation Order

HLAfederationExecution name HLAunicodeString Static NA N PS NA HLAreliable Receive

Table 11. MFOM attribute table.

Interaction Parameter Datatype Available
dimensions Transportation Order

HLAinteractionRoot HLAmetaFederation NA NA NA HLAreliable Receive

federationExecutionName HLAunicodeStringHLAcreateFederationExecution
federationDescriptionDocument HLAopaqueData

NA HLAreliable Receive

HLAdestroyFederationExecution federationExecutionName HLAunicodeString NA HLAreliable Receive
federationExecutionName HLAunicodeString

federateType HLAunicodeString

HLAmetaFederation

HLAjoinFederationExecution
federateHandle

HLAnormalizedHandle

NA HLAreliable Receive

Table 12. MFOM parameter table.

 37

 38

Name Representation Units Resolution Accuracy Semantics

HLAnormalizedHandle HLAinteger64BE NA NA NA A normalized
handle.

Table 13. MFOM simple datatype table.

Object Definition
HLAmetaFederation This object class is the root class of all MFOM

object classes.
HLAfederationExecution Represents an HLA federation execution.

Table 14. MFOM object class definitions table.

Interaction Definition
HLAmetaFederation Root class of MFOM interactions.

HLAcreateFederationExecution Creates a federation execution.
HLAdestroyFederationExecution Destroys a federation execution.

HLAmetaFederation

HLAjoinFederationExecution Joins a federation execution.

Table 15. MFOM interaction class definitions table.

Class Attribute Definition

HLAfederationExecution name The name of the execution.

Table 16. MFOM attribute definitions table.

Class Parameter Definition

federationExecutionName The name of the execution to create. HLAcreateFederationExecution
federationDescriptionDocument The encoded federation description document.

HLAdestroyFederationExecution federationExecutionName The name of the execution to destroy.
federationExecutionName The name of the execution to join.

federateType The type of the joining federate.

HLAmetaFederation

HLAjoinFederationExecution

federateHandle The handle of the joining federate.

Table 17. MFOM parameter definitions table.

 39

 40

D. REFLECTION OBJECT MODEL

The ROM defines the object and interaction classes required for run-time

communication ontology reflection and extension. Its object classes are based on

elements of the OMT: object classes, attributes, interaction classes, parameters,

dimensions, synchronizations, transportations, and data types. The XRTI Executive

creates instances of these reflection objects to represent the contents of the original FDD

specified as a parameter to the MFOM’s HLAcreateFederationExecution interaction and

any FDDs that federates have merged into the FOM via the ROM’s HLAmergeFDD

interaction. The values of the instance handles of HLAobjectClass, HLAattribute,

HLAinteractionClass, HLAparameter, and HLAdimension instances are equal to the

values of the corresponding object class handle, attribute handle, interaction class handle,

parameter handle, and dimension handle, respectively. Instances of HLAobjectClass

contain an attribute named attributes whose value is a list of handles identifying

attributes associated with the class. Similarly, instances of HLAinteractionClass contain

an attribute named parameters. Other attributes—for instance, the parents attribute—are

strings that identify shared objects by name. When federates invoke the HLAmergeFDD

interaction, they specify an encoded FDD as its parameter. It is the responsibility of the

XRTI Executive to resolve any conflicts that may exist between the existing FOM and

the new FDD.

 41

HLAobjectClass (PS)
HLAattribute (PS)

HLAinteractionClass
(PS)

HLAparameter (PS)
HLAdimension (PS)
HLAsynchronization

(PS)
HLAtransportation

(PS)

HLAbasicRepresentation (PS)
HLAsimpleDataType (PS)

HLAenumeratedDataType (PS)
HLAarrayDataType (PS)

HLAfixedRecordDataType (PS)

HLAobjectRoot (N) HLAreflection
(N)

HLAdataType(N)

HLAvariantRecordDataType (PS)

Table 18. ROM object class structure table.

HLAinteractionRoot (N) HLAreflection (N) HLAmergeFDD (PS)

Table 19. ROM interaction class structure table.

Object Attribute Datatype Update
type

 Update
condition

T/A P/S Available
dimensions

Transportation Order

HLAreflection name HLAunicodeString Static NA N PS NA HLAreliable Receive
parents HLAunicodeString Static NA N PS NA HLAreliable Receive
sharing HLAsharingType Static NA N PS NA HLAreliable Receive

attributes HLAattributeHandleList Static NA N PS NA HLAreliable Receive

HLAobjectClass

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive
dataType HLAunicodeString Static NA N PS NA HLAreliable Receive

updateType HLAupdateType Static NA N PS NA HLAreliable Receive
updateCondition HLAunicodeString Static NA N PS NA HLAreliable Receive

ownership HLAownershipType Static NA N PS NA HLAreliable Receive
sharing HLAsharingType Static NA N PS NA HLAreliable Receive

dimensions HLAunicodeString Static NA N PS NA HLAreliable Receive
transportation HLAunicodeString Static NA N PS NA HLAreliable Receive

order HLAorderType Static NA N PS NA HLAreliable Receive

HLAattribute

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive

parents HLAunicodeString Static NA N PS NA HLAreliable Receive
sharing HLAsharingType Static NA N PS NA HLAreliable Receive

dimensions HLAunicodeString Static NA N PS NA HLAreliable Receive
transportation HLAunicodeString Static NA N PS NA HLAreliable Receive

order HLAorderType Static NA N PS NA HLAreliable Receive
parameters HLAparameterHandleList Static NA N PS NA HLAreliable Receive

HLAinteractionClass

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive
name HLAunicodeString Static NA N PS NA HLAreliable Receive

dataType HLAunicodeString Static NA N PS NA HLAreliable Receive
semantics HLAunicodeString Static NA N PS NA HLAreliable Receive

HLAparameter

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive

Table 20. ROM attribute table.

 42

Object Attribute Datatype Update
type

 Update
condition

T/A P/S Available
dimensions

Transportation Order

dataType HLAunicodeString Static NA N PS NA HLAreliable Receive
upperBound HLAunicodeString Static NA N PS NA HLAreliable Receive

normalization HLAunicodeString Static NA N PS NA HLAreliable Receive

HLAdimension

value HLAunicodeString Static NA N PS NA HLAreliable Receive

label HLAunicodeString Static NA N PS NA HLAreliable Receive
dataType HLAunicodeString Static NA N PS NA HLAreliable Receive
capability HLAcapabilityType Static NA N PS NA HLAreliable Receive

HLAsynchronization

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive

name HLAunicodeString Static NA N PS NA HLAreliable ReceiveHLAtransportation
description HLAunicodeString Static NA N PS NA HLAreliable Receive

size HLAbasicRepresentationSize Static NA N PS NA HLAreliable Receive
endian HLAendianType Static NA N PS NA HLAreliable Receive

interpretation HLAunicodeString Static NA N PS NA HLAreliable Receive

HLAbasicRepresentation

encoding HLAunicodeString Static NA N PS NA HLAreliable Receive

representation HLAunicodeString Static NA N PS NA HLAreliable Receive
units HLAunicodeString Static NA N PS NA HLAreliable Receive

resolution HLAunicodeString Static NA N PS NA HLAreliable Receive
accuracy HLAunicodeString Static NA N PS NA HLAreliable Receive

HLAsimpleDataType

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive

representation HLAunicodeString Static NA N PS NA HLAreliable Receive
enumerators HLAenumeratorList Static NA N PS NA HLAreliable Receive

HLAenumeratedDataType

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive

Table 21. ROM attribute table (continued).

 43

Object Attribute Datatype Update

type
 Update

condition
T/A P/S Available

dimensions
Transportation Order

dataType HLAunicodeString Static NA N PS NA HLAreliable Receive
cardinality HLAunicodeString Static NA N PS NA HLAreliable Receive
encoding HLAunicodeString Static NA N PS NA HLAreliable Receive

HLAarrayDataType

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive

fields HLAfieldList Static NA N PS NA HLAreliable Receive
encoding HLAunicodeString Static NA N PS NA HLAreliable Receive

HLAfixedRecordDataType

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive

discriminant HLAunicodeString Static NA N PS NA HLAreliable Receive
dataType HLAunicodeString Static NA N PS NA HLAreliable Receive

alternatives HLAalternativeList Static NA N PS NA HLAreliable Receive
encoding HLAunicodeString Static NA N PS NA HLAreliable Receive

HLAvariantRecordDataType

semantics HLAunicodeString Static NA N PS NA HLAreliable Receive

Table 22. ROM attribute table (continued).

Interaction Parameter Datatype Available
dimensions Transportation Order

HLAinteractionRoot HLAreflection NA NA NA HLAreliable Receive

HLAreflection HLAmergeFDD federationDescriptionDocument HLAopaqueData NA HLAreliable Receive

Table 23. ROM parameter table.

 44

 45

Name Representation Units Resolution Accuracy Semantics

HLAnormalizedHandle HLAinteger64BE N/A N/A N/A
A

normalized
handle.

HLAbasicRepresentationSize HLAinteger32BE bits N/A N/A N/A

Table 24. ROM simple datatype table.

Name Representation Enumerator Values Semantics

Big 0
HLAendianType HLAinteger32BE

Little 1

Endian type to be
used for

describing basic
representations.

Receive 0
HLAorderType HLAinteger32BE

TimeStamp 1

Order type to be
used for sending

attributes or
interactions.

Divest 0
Acquire 1

DivestAcquire 2
HLAownershipType HLAinteger32BE

NoTransfer 3

Ownership type to
be used for

sending attributes.

Publish 0
Subscribe 1

PublishSubscribe 2
HLAsharingType HLAinteger32BE

Neither 3

Sharing type to be
used for sending

attributes
or interactions.

Static 0
Periodic 1

Conditional 2
HLAupdateType HLAinteger32BE

NA 3

Update type to be
used for sending

attributes.

Register 0
Achieve 1

RegisterAchieve 2
HLAcapabilityType HLAinteger32BE

NoSynch 3

Capability type to
be used for

synchronizations.

Table 25. ROM enumerated datatype table.

 46

Name Element Type Cardinality Encoding Semantics

HLAattributeHandleList HLAnormalizedHandle Dynamic HLAvariableArray
A list of
attribute
handles.

HLAparameterHandleList HLAnormalizedHandle Dynamic HLAvariableArray
A list of

parameter
handles.

HLAenumeratorList HLAenumerator Dynamic HLAvariableArray

List of
enumerated

type
enumerators.

HLAfieldList HLAfield Dynamic HLAvariableArray
List of fixed
record type

fields.

HLAalternativeList HLAalternative Dynamic HLAvariableArray

List of
variant

record type
alternatives.

Table 26. ROM array datatype table.

Field
Record name

Name

Type Semantics
Encoding Semantics

name HLAunicodeString Enumerator
name. HLAenumerator

values HLAunicodeString Enumerator
values.

HLAfixedRecord Enumerated type
enumerator.

name HLAunicodeString Field name.

dataType HLAunicodeString Field data type. HLAfield

semantics HLAunicodeString Field semantics.

HLAfixedRecord Fixed record type
field.

enumerator HLAunicodeString Alternative
enumerator.

name HLAunicodeString Alternative name.

dataType HLAunicodeString Alternative data
type.

HLAalternative

semantics HLAunicodeString Alternative
semantics.

HLAfixedRecord Variant record
type alternative.

Table 27. ROM fixed record datatype table.

 47

 48

Object Definition
HLAreflection This object class is the root class of all ROM

object classes.
HLAobjectClass Represents an HLA object class.

HLAattribute Represents an HLA object attribute.

HLAinteractionClass Represents an HLA interaction class.
HLAparameter Represents an HLA interaction parameter.
HLAdimension Represents an HLA dimension.

HLAsynchronization Represents an HLA synchronization.
HLAtransportation Represents an HLA transportation.

HLAdataType Represents an HLA data type.
HLAbasicRepresentation Represents an HLA basic representation.

HLAsimpleDataType Represents an HLA simple data type.
HLAenumeratedDataType Represents an HLA enumerated data type.

HLAarrayDataType Represents an HLA array data type.
HLAfixedRecordDataType Represents an HLA fixed record data type.

HLAvariantRecordDataType Represents an HLA variant record data type.

Table 28. ROM object class definitions table.

Interaction Definition

HLAreflection Root class of ROM interactions.
HLAreflection HLAmergeFDD Merges the contents of a new federation

description document into the FOM.

Table 29. ROM interaction class definitions table.

 49

Class Attribute Definition

HLAreflection name The name of the reflection object.
parents The parents of the object class.
sharing The types of sharing permitted on the object.

attributes The object attributes.
HLAobjectClass

semantics The object semantics.
dataType Attribute data type.

updateType Attribute update type.
updateCondition Attribute update condition.

ownership Attribute ownership.
sharing Attribute sharing.

dimensions Attribute dimensions.
transportation Attribute transportation.

order Attribute order.

HLAattribute

semantics Attribute semantics.
parents The parents of the interaction class.

sharing The types of sharing permitted on the
interaction.

dimensions The dimensions of the interaction.
transportation The transportation of the interaction.

order The order of the interaction.
parameters The parameters of the interaction.

HLAinteractionClass

semantics The semantics of the interaction.
name Parameter name.

dataType Parameter data type. HLAparameter
semantics Parameter semantics.
dataType The data type of the dimension.

upperBound The upper bound of the dimension.
normalization The normalization of the dimension. HLAdimension

value The value of the dimension.
label The label of the synchronization.

dataType The data type of the synchronization.
capability The capability of the synchronization. HLAsynchronization

semantics The semantics of the synchronization.
name The name of the transportation.

HLAtransportation
description The description of the transportation.

size The size of the basic representation.
endian The byte ordering of the basic representation.

interpretation The interpretation of the basic representation.
HLAbasicRepresentation

encoding The encoding of the basic representation.

Table 30. ROM attribute definitions table.

 50

]

Class Attribute Definition
representation The representation of the simple type.

units The units of the simple type.
resolution The resolution of the simple type.
accuracy The accuracy of the simple type.

HLAsimpleDataType

semantics The semantics of the simple type.
representation The representation of the enumerated type.
enumerators The enumerators of the enumerated type. HLAenumeratedDataType

semantics The semantics of the enumerated type.
dataType The element type of the array type.

cardinality The cardinality of the array type.
encoding The encoding of the array type. HLAarrayDataType

semantics The semantics of the array type.

fields The fields of the fixed record type.
encoding The encoding of the fixed record type. HLAfixedRecordDataType
semantics The semantics of the fixed record type.

discriminant The discriminant of the variant record type.
dataType The data type of the variant record type.

alternatives The alternatives of the variant record type.
encoding The encoding of the variant record type.

HLAvariantRecordDataType

semantics The semantics of the variant record type.

Table 31. ROM attribute definitions table (continued).

Class Parameter Definition
HLAreflection HLAmergeFDD federationDescriptionDocument The encoded federation

description document.

Table 32. ROM parameter definitions table.

 51

IV. LOW-LEVEL DESIGN AND IMPLEMENTATION:
SOFTWARE COMPONENTS

A. PROXY COMPILER

The proxy compiler converts XML FOM Document Data (FDDs) into sets of

proxy source files. Developers can use these proxies with any RTI conforming to the

IEEE 1516 HLA standard, but the XRTI makes special use of the proxy compiler to

generate proxies corresponding to the Bootstrap Object Model (BOM), the Meta-

Federation Object Model (MFOM), the Reflection Object Model (ROM), and the

Management Object Model (MOM). The XRTI’s other software components, the XRTI

Ambassador and the XRTI Executive, use these autogenerated proxies as part of the

bootstrap process. For example, the proxy compiler converts the BOM’s

HLAbootstrapInteractionPayload data type into a Java class,

HLAbootstrapInteractionPayload, that components can use to read and write

payloads easily and efficiently. For this reason, the proxy compiler is a fundamental and

important component of the XRTI.

1. Type Mappings

One of the most basic tasks of the proxy compiler is that of mapping the types

defined by the HLA standard to equivalent Java data types. The HLA’s object model

template (OMT) specification includes a number of basic representations, simple types,

enumerated types, and array types that every object model must support. The following

tables indicate the manner in which the proxy compiler maps these built-in types, and any

additional derived types defined in the FDD, to Java types.

 52

HLA basic representation Java type
HLAinteger16BE short
HLAinteger16LE short
HLAinteger32BE int
HLAinteger32LE int
HLAinteger64BE long
HLAinteger64LE long
HLAfloat32BE float
HLAfloat32LE float
HLAfloat64BE double
HLAfloat64LE double

HLAoctetPairBE short
HLAoctetPairLE short

HLAoctet byte
(all others) byte[]

Table 33. Mappings between HLA basic representations and Java data types.

Basic representations include integer, floating point, and octet values in different

sizes and endian configurations. The XRTI maps 16-bit, 32-bit, and 64-bit integer

representations to Java’s short, int, and long types, respectively. Java’s float and

double types are similarly equivalent to the HLA’s 32-bit and 64-bit floating point

representations. The endian configuration of each representation determines the manner

in which the code generated by the proxy compiler serializes that representation’s values.

The proxy compiler maps octet pairs—uninterpreted pairs of bytes—to short values,

and octets to byte values. When the proxy compiler encounters basic representations

without an explicit mapping, it maps them to byte arrays. Byte arrays are the lowest-

common-denominator representation; any kind of data can be expressed as a byte array.

HLA simple type Java type
HLAASCIIchar char

HLAunicodeChar char
(all others) (basic representation mapping)

Table 34. Mappings between HLA simple types and Java data types.

 53

For most simple data types, the XRTI simply retrieves the type’s basic

representation and uses that to obtain a mapping. However, the HLAASCIIchar and

HLAunicodeChar map to Java’s char type.

HLA enumerated type Java type

HLAboolean boolean
(all others) (HLA type name)

Table 35. Mappings between HLA enumerated types and Java data types.

The HLAboolean type is equivalent to Java’s boolean primitive; the HLAfalse

enumerator becomes false and the HLAtrue enumerator becomes true. For all other

enumerated types, as well as for all fixed and variant record types, the proxy compiler

generates a Java source file with the name of the defined type as described in section

IV.3.a.

HLA array type Java type
HLAASCIIstring java.lang.String

HLAunicodeString java.lang.String
(all others) (result of HLA type mapping + “[]”)

Table 36. Mappings between HLA array types and Java data types.

Both HLAASCIIstring and HLAunicodeString map to Java’s string class,

java.lang.String. The proxy compiler maps all other array types by first

obtaining a mapping for the element type, then appending Java’s array indicator: a pair of

square brackets. An array of arrays of HLAboolean values would thus, for instance, map

to boolean[][].

2. Encoding Streams

The encoding and decoding sequences generated by the proxy compiler to

marshal object instance attributes and interaction parameters depend on instances of

HLAEncodingInputStream and HLAEncodingOutputStream to read and write

basic HLA type values. To encode an autogenerated fixed record data type class, for

instance, the proxy compiler generates a sequence that wraps a Java

 54

ByteArrayOutputStream within an HLAEncodingOutputStream and invokes

the class’s encode method. The body of that method, itself generated by the proxy

compiler, writes each field of the fixed record to the stream in sequence. If the field

represents a simple data type whose basic represention is HLAinteger32BE, for instance,

then the method invokes writeHLAinteger32BE, passing it the int value of the

field. The corresponding little-endian version of the method,

writeHLAinteger32LE, reverses the byte ordering of the value. The encoding

stream keeps track of the alignment of each element written, padding its output as

necessary to conform to the HLA’s alignment rules. Each of the HLA types listed in the

tables above has a read method in HLAEncodingInputStream and a write

method in HLAEncodingOutputStream.

3. Parameters

The proxy compiler accepts a number of parameters: command line parameters

when invoked as a standalone application, task parameters when invoked as an Ant task.

The only mandatory parameter is the location of the FDD to read as input. Other

parameters include the directory in which to place the output files, the package name to

associate with the output files, the name of the proxy ambassador class, and the name of

the interaction listener interface. The following table lists the names of the parameters

along with their default values. For the default values of the proxyambassadorname and

interactionlistenername parameters, the proxy compiler massages the value of the FDD’s

object model name attribute into a Java identifier prefix by capitalizing each word and

eliminating all whitespace and punctuation characters.

Parameter name Default value

fdd None (required parameter)
targetdirectory Current working directory
packageprefix None (default package)

proxyambassadorname Object model name + “ProxyAmbassador”
interactionlistenername Object model name + “InteractionListener”

Table 37. Proxy compiler parameters.

 55

4. Output Files

a. Data Types

For each enumerated data type other than HLAboolean, for each fixed

record data type, and for each variant record data type, the proxy compiler generates a

Java source file. Each source file represents a Java class with the same name as its

equivalent HLA type. For encoding and decoding data types, each class has a static

decode method that reads and returns an instance of the type from an

HLAEncodingInputStream, and a non-static encode method that writes the

instance to an HLAEncodingOutputStream. Each class also has a no-argument

default constructor and a copy constructor. The copy constructor initializes the object to

be a copy of the constructor parameter, which must be of the same type as the class.

Proxy compiler classes use the no-argument constructors to initialize instances to

reasonable default values. The value of an enumerated type, for instance, defaults to the

type’s first enumerator. For fixed record types, the no-argument constructor initializes

simple fields to Java defaults (false for boolean fields, 0 for integer fields, etc.), array

fields to zero-length arrays, and object fields to new instances initialized with default

constructors. Variant record types default to their first alternative, and their default

constructors initialize each alternative value as if it were a fixed record field.

Autogenerated enumerated type, fixed record type, and variant record type classes also

override Java’s default toString method to return string representations of their state.

Enumerated type state consists of a single value that corresponds to one of

the type’s enumerators. That value’s Java type comes from the enumerated type’s

representation attribute. For each enumerator, the autogenerated enumerated type class

contains a static member that federates can use directly to represent known values. For

instance, the HLAorderType class, generated by the proxy compiler to represent the

ROM’s HLAorderType enumerated type, contains two static members:

HLAorderType.Receive and HLAorderType.TimeStamp. The values of these

variables are those specified by the values attributes of the FDD’s enumerator elements.

To encode and decode instances of the type, the encode and decode methods simply

write and read, respectively, the enumerated type’s representation value. When the value

 56

corresponds to one of the enumerators, the toString method returns the enumerator’s

name; when the value is unknown, toString returns the value itself. The equals

method compares the value of the type to that of the parameter, returning true if the

values are equal and false if they are not. The hashCode method returns the integer

equivalent of the representation value.

Fixed record types contain a number of fields, each with its own name,

type, and semantics. For each field, the proxy compiler creates a member variable whose

name is equal to that of the field, whose type is the Java equivalent of the field’s type,

and whose Javadoc comment is the field’s semantics. To encode and decode instances of

the type, the encode and decode methods write and read each field variable in

sequence. Fixed record classes include constructors that accept initial values for all fields

as their parameters. Also, for each field, the proxy compiler creates a pair of get and

set methods for obtaining and modifying, respectively, the value of the field variable.

The toString method returns string representations of each field.

Variant record types contain a named, typed discriminant and a number of

named, typed alternatives. The value of the discriminant determines which of the

alternatives is valid. To encode and decode variant records, the encode and decode

methods write and read first the value of the discriminant, then the value of the active

alternative that the discriminant identifies. Each variant record class includes a

constructor that allows federates to specify the initial value of the discriminant, and get

and set methods for the discriminant and for all alternatives. The toString method

returns a string representation of the discriminant and the active alternative.

b. Proxy Ambassador

The proxy compiler creates a proxy ambassador class for each FDD. All

proxy ambassadors are direct children of the ProxyAmbassador class included in the

XRTI’s utilities package along with the proxy compiler. ProxyAmbassador

implements the HLA’s FederateAmbassador interface in order to intercept

callbacks generated by the RTI. Federates and XRTI components use instances of

ProxyAmbassador directly as a means to broadcast RTI callbacks to multiple federate

 57

ambassadors. The registerFederateAmbassador and

deregisterFederateAmbassador methods add and remove federate ambassadors

from the proxy ambassador’s internal broadcast list. Through these methods, federates

can use any number of proxy ambassadors at once, and can add or remove proxy

ambassadors at any time.

The subclasses of ProxyAmbassador created by the proxy compiler

perform two major functions: managing object instance proxies and allowing federates to

send and receive interactions. The constructor of each proxy ambassador takes a

reference to the RTIambassador as its parameter and initializes the instance by

obtaining and storing handles for all supported object classes, interaction classes, and

interaction parameters, as well as by publishing and subscribing all supported

interactions. For each object class, the proxy compiler creates a new method that creates

and returns a new instance of the corresponding object instance proxy class. This is the

method that federates must use to create new locally-owned object instances. To create

new proxies in response to discovered objects, proxy ambassadors capture the

discoverObjectInstance callback and use its parameters to create proxy objects.

Proxy ambassadors maintain a mapping between object instance handles and proxy

objects in order to delegate callbacks such as reflectAttributeValues and

provideAttributeValueUpdate to the appropriate object instance proxies.

Federates can obtain proxies according to their object instance handles using the

getObjectInstanceProxy method, and they can retrieve a list of references to all

of the ambassador’s proxies through the getObjectInstanceProxies method.

The ProxyAmbassador class also allows objects implementing the

ProxyAmbassadorListener interface to receive notifications concerning the

creation and destruction of proxy objects by invoking the

addProxyAmbassadorListener method. The corresponding

removeProxyAmbassadorListener method removes the object from the proxy

ambassador’s notification list.

For each interaction class defined in the FDD, the proxy compiler creates

a send method in the proxy ambassador that allows federates to send an interaction of

 58

the described type with a single call. That method takes as its parameters Java versions

of the parameters associated with the interaction class and all of its superclasses, as well

as a user-supplied tag. The proxy compiler uses the semantics of the interaction as the

method’s Javadoc description. The body of the method populates an HLA

ParameterHandleValueMap with the handles and encoded values of the interaction

parameters, and calls the RTI ambassador’s sendInteraction method with the

interaction handle, the parameter handle value map, and the user-supplied tag. The proxy

ambassador’s receiveInteraction method checks the handles of received

interactions against the handles of known interaction classes, decoding any interpretable

interactions and sending them to objects that have registered as interaction listeners using

the addInteractionListener method. That method and its counterpart,

removeInteractionListener, take as their parameters instances of autogenerated

listener interfaces containing methods corresponding to each interaction class.

c. Interfaces

For each FDD, the proxy compiler creates an interaction listener interface

and a number of object instance and object instance listener interfaces. The interaction

listener interface contains a receive method prototype for each interaction class with a

Javadoc comment containing the class’s semantics. The method’s parameters include

Java versions of the interaction parameters and a user-supplied tag, as above, as well as

indications of the order and transportation types with which the interaction arrived.

Object instance interfaces extend the interfaces generated for all of their superclasses,

taking advantage of Java’s support for multiple interface inheritance. For each attribute

associated with the object class, the object instance interface includes a pair of set and

get method prototypes. The set method accepts a Java version of the attribute’s

defined type as well as a user-supplied tag to associate with the update. The get method

takes no parameters, and simply returns the Java value associated with the attribute.

Object instance interfaces also include addXListener and removeXListener

(where X is the name of the object class) method prototypes. These methods take as their

parameters instances of the listener interface generated for the object class. These

listener interfaces contain, for each attribute, an xUpdated (where x is the name of the

 59

attribute) method prototype with a set of parameters that includes the source of the event

(an instance of the corresponding object instance interface), the old value of the attribute,

the new value of the attribute, the user-supplied tag associated with the update, the order

type associated with the update, and the transportation type associated with the update.

d. Object Instance Proxies

The proxy compiler creates an object instance proxy class for each object

class defined in the FDD. Each object instance proxy class extends the proxy of its

corresponding class’s direct parent (or the ObjectInstanceProxy utility class, if

unparented) and implements the object instance interfaces created for that class and all of

its superclasses. Instance proxy fields include a reference to the RTIambassador; the

object instance handle; the object class handle; the name of the object; the auto-flush-

disabled flag; the deleted flag; sets of listeners for attributes associated with each

implemented interface; and the handle, dirty flag, and value of each attribute. Every

instance proxy class includes three constructors: one for proxies created to represent

discovered objects, one for locally created proxies with unspecified names, and one for

locally created proxies with explicitly specified names. All of the constructors initialize

the attributes by retrieving their handles, settings their values to valid defaults, and

publishing and subscribing them through the RTI ambassador. The constructors for

locally-owned objects also register the instances using the RTI ambassador’s

registerObjectInstance method.

The proxy ambassador calls the reflectAttributeValues and

provideAttributeValueUpdate methods of the object instance proxy in response

to callbacks from the RTI. For reflectAttributeValues, the object instance

proxy iterates through the AttributeHandleValueMap provided, decoding the

values of known attributes, storing them in their corresponding value fields, and notifying

any object instance listeners registered for the class with which the attribute is associated.

For provideAttributeValueUpdate, the object instance proxy identifies known

attributes in the AttributeHandleSet provided, setting their associated dirty flags

and calling the autogenerated flushAttributeValues method, which encodes the

values of all dirty attributes, pairs them with their handles in an

 60

AttributeHandleValueMap, clears their dirty flags, and calls the RTI

ambassador’s updateAttributeValues method. Federates can also invoke the

flushAttributeValues method in a super-flush mode, causing it to update all of

the object instance proxy’s attribute values, whether or not they are dirty. For each

attribute, the proxy compiler generates set and get methods conforming to the

prototypes contained in the object instance interface. The set method modifies the

attribute value, sets the attribute’s dirty flag, and, if the auto-flush-disabled flag is not set,

calls flushAttributeValues to notify the RTI of the update. The get method

simply returns the attribute value.

Because Java objects cannot be explicitly deleted, each object instance

proxy contains a deleted flag that indicates whether or not the proxy’s corresponding

object instance has been removed from the federation execution. For locally owned

objects, calling the delete method sets the deleted flag and invokes the RTI

ambassador’s deleteObjectInstance method. Remotely owned objects become

deleted when the proxy ambassador receives a removeObjectInstance callback,

causing it to remove the object instance proxy from its internal list and to notify its

listeners of the proxy’s destruction.

B. XRTI AMBASSADOR

The XRTI Ambassador is the class that federates must instantiate and use in order

to participate in XRTI federation executions. It conforms to the RTI ambassador

interface defined by IEEE 1516.1 and implements the mergeFDD method described in

section II.D of this thesis. To join a federation execution, federates must first invoke the

ambassador’s initializeRTI method, passing it a java.util.Properties

object containing configuration properties expressed as mappings between string-valued

names and textual values. After initializing the XRTI Ambassador, federates can create

executions using the createFederationExecution method, specifying the

execution name and the initial FDD, and join them using the

joinFederationExecution method, passing the federate type, the execution name,

the federate ambassador, and the mobile federate services. Once joined to an execution,

federates can publish and subscribe object and interaction classes, send and receive

 61

interactions, create and destroy object instances, update object attributes, and receive

notifications in the form of federate ambassador callbacks when remotely owned objects

are created, destroyed, and updated. When federates are ready to leave the execution,

they call the resignFederationExecution method, and they can optionally

invoke destroyFederationExecution to remove the execution if they are the last

federate to leave.

1. Message Channels

Communication between the XRTI Ambassador and the XRTI Executive occurs

through an abstract message channel interface that allows federates to plug in new types

of channels at run time. Both the ambassador and the executive interpret the

message.channel.factory configuration property, when specified, as the name of

a concrete descendant of the abstract MessageChannelFactory class.

MessageChannelFactory includes two method prototypes:

newChannelToExecutive and newFederateChannelAcceptor. Both

methods take as their parameter a Properties object containing configuration options.

For channels created by the XRTI Ambassador, this is the same object passed by the

federate to initializeRTI. The newChannelToExecutive method returns an

instance of MessageChannel, the abstract superclass of all objects that transmit and

receive messages with selectably reliable transportation. MessageChannel defines

several method prototypes: getMaximumPacketSize, which returns the channel’s

packet size limit in bytes; sendPacket, which transmits the contents of its

DatagramPacket parameter through the channel; receivePacket, which blocks

until a packet is available, then places the received packet in a user-specified

DatagramPacket; getInputStream, which returns the

java.io.InputStream corresponding to the channel’s reliable input;

getOutputStream, which returns the java.io.OutputStream for reliable

output; close, which closes the channel; and isClosed, which checks the channel’s

closed state.

If the Properties object passed to the XRTI Ambassador does not contain a

mapping for the message.channel.factory option, the ambassador uses an

 62

instance of DefaultMessageChannelFactory. This default class creates

instances of InternetMessageChannel in response to

newChannelToExecutive method calls, and instances of

InternetMessageChannelAcceptor in response to

newFederateChannelAcceptor calls. Internet message channels contain two

components: a User Datagram Protocol (UDP) component for packet-based, best-effort

messaging, and a Transmission Control Protocol (TCP) component for stream-based,

reliable messaging. DefaultMessageChannelFactory interprets two

configuration properties, executive.host and executive.port, in creating new

message channels and channel acceptors. The executive.host property specifies

the host name of the computer where the the XRTI Executive is running, and the

executive.port property specifies the executive’s port number. When a new

channel to the executive is initialized, that channel opens any available UDP port, creates

a TCP connection to the XRTI Executive, and writes its UDP port number though that

connection. The executive, having accepting the connection, likewise opens a new UDP

port and sends its port number through the TCP stream. After both sides have received

each other’s UDP port number, they can exchange datagram packets and streamed

messages until the channel is closed.

2. Message Flow

After creating a channel to the XRTI Executive using the

MessageChannelFactory, the XRTI Ambassador creates two threads for incoming

messages: one for messages received in packets and one for messages received through

the channel’s input stream. When either of these threads receives a message, it passes it

to the private interpretReceivedMessage method for dispatch. That method

ensures that the message’s protocol identifier and version number are equal to the

expected values: 0xFEEDAFED and the BOM version number, respectively. It then uses

the static decode method of the autogenerated

HLAbootstrapInteractionPayload class to convert the encoded message into a

directly interpretable object, verifies that the payload’s federation execution handle is that

of the joined execution, extracts the payload’s interaction handle and parameters, and

 63

invokes the receiveInteraction method of a ProxyAmbassador instance

created upon initialization. That instance of ProxyAmbassador contains the

FederateAmbassador passed to joinFederationExecution as well as proxy

ambassadors for the BOM, MFOM, ROM, and MOM.

The XRTI Ambassador listens to both BOM and MOM interactions by

implementing the autogenerated BootstrapInteractionListener and

ManagementInteractionListener interfaces and registering with the BOM and

MOM proxy ambassadors. When an HLAinteractionFragment is received, therefore, the

BOM proxy ambassador calls the XRTI Ambassador’s

receiveHLAinteractionFragment method with the parameters of the

interaction. The body of that method composes received fragments and sends completely

formed interactions to the interpretReceivedMessage method. The

receiveHLAregisterObjectInstance method invokes the proxy ambassador’s

discoverObjectInstance method, announcing the discovery of a new object

instance. Similarly, receiveHLArequestAttributeValueUpdate invokes

provideAttributeValueUpdate in the proxy ambassador,

receiveHLAupdateAttributeValuesBestEffort and

receiveHLAupdateAttributeValuesReliable invoke

reflectAttributeValues, and receiveHLAdeleteObjectInstance

invokes removeObjectInstance.

The XRTI Ambassador converts most interactions sent through its

sendInteraction method directly into messages, prepending the protocol identifier

and the BOM version number to an encoded instance of

HLAbootstrapInteractionFragment and sending the resulting message through

the MessageChannel. For best-effort interactions that exceed the channel’s maximum

packet size, however, the ambassador divides the interaction into a series of fragments

and makes repeated calls to the BOM proxy ambassador’s

sendHLAinteractionFragment method, which in turn calls

sendInteraction to send the fragments.

 64

3. Obtaining Handles

After connecting to and establishing a message flow with the XRTI Executive in

the initializeRTI method, but before returning control to the federate, the XRTI

Ambassador must obtain a block of unique identifiers for it to use as handles. The

interactions required for this task, and all other interactions associated with the meta-

federation, have the number 0 as their federation execution handle. To acquire the

handles, the XRTI Ambassador first sends an HLArequestHandles interaction through the

BOM proxy ambassador. After requesting a block of 232 handles, the XRTI Ambassador

waits for the receiveHLAreportHandles callback and uses the result of that

callback as the initial value for a handle counter. Every time the XRTI Ambassador

needs a new handle for the joinFederationExecution or

registerObjectInstance service, it uses the counter’s current value, then

increments the counter.

4. Service Mappings

Many of the services provided by the XRTI Ambassador correspond directly to

interactions defined by the BOM, MFOM, ROM, or MOM. The following table maps

the name of each service to its corresponding interaction class and the object model in

which the class is defined. When federates invoke each service, the XRTI Ambassador

transforms the method’s parameters into those required by the interaction class and

invokes the autogenerated send method that corresponds to that class in the appropriate

object model proxy ambassador. These interactions are received and interpreted by the

XRTI Executive.

 65

Service name Interaction class Object
model

createFederationExecution HLAcreateFederationExecution MFOM
destroyFederationExecution HLAdestroyFederationExecution MFOM

joinFederationExecution HLAjoinFederationExecution MFOM
resignFederationExecution HLAresignFederationExecution MOM

mergeFDD HLAmergeFDD ROM
publishObjectClassAttributes HLApublishObjectClassAttributes MOM

unpublishObjectClass HLAunpublishObject-ClassAttributes MOM
unpublishObjectClassAttributes HLAunpublishObject-ClassAttributes MOM

publishInteractionClass HLApublishInteractionClass MOM
unpublishInteractionClass HLAunpublishInteractionClass MOM

subscribeObjectClassAttributes HLAsubscribeObject-ClassAttributes MOM
subscribeObjectClassAttributes-

Passively
HLAsubscribeObject-ClassAttributes MOM

unsubscribeObjectClass HLAunsubscribeObjectClass-
Attributes

MOM

unsubscribeObjectClassAttributes HLAunsubscribeObjectClass-
Attributes

MOM

subscribeInteractionClass HLAsubscribeInteractionClass MOM

subscribeInteractionClassPassively HLAsubscribeInteractionClass MOM
unsubscribeInteractionClass HLAunsubscribeInteractionClass MOM

registerObjectInstance HLAregisterObjectInstance BOM
updateAttributeValues HLAupdateAttributeValues BOM
deleteObjectInstance HLAdeleteObjectInstance MOM

localDeleteObjectInstance HLAlocalDeleteObjectInstance MOM
changeAttributeTransportationType HLAchangeAttribute-

TransportationType
MOM

changeInteraction-
TransportationType

HLAchangeInteraction-
TransportationType

MOM

requestAttributeValueUpdate HLArequestAttributeValueUpdate BOM

Table 38. Service mappings.

5. Descriptor Manager

The XRTI Ambassador’s descriptor manager tracks names, handles, and other

information regarding object classes, attributes, interaction classes, parameters, object

instances, dimensions, and regions. The ambassador initializes the descriptor manager by

 66

populating it with the information contained in the BOM, MFOM, ROM, and MOM. For

each of these base object models, the descriptor manager assigns handles to features

sequentially, starting with 1. Thus the handle of the BOM’s first interaction class is 1,

the handle of its second interaction class is 2, and so on, and the handle of the MFOM’s

first object class is one greater than the handle of the BOM’s last interaction parameter.

Assigning handles in this manner ensures that any two XRTI components with the same

basic FDDs will use the same handles for features defined in the BOM, MFOM, ROM,

and MOM. For federation-specific features, the descriptor manager uses the ROM proxy

ambassador created by the XRTI Ambassador to obtain information concerning reflection

objects managed by the XRTI Executive. When the descriptor manager detects the

presence of a new object instance proxy, it creates and integrates a descriptor for the

corresponding feature. That descriptor in turn listens to the instance proxy in order to

reflect changes made to the reflection object. The XRTI Ambassador uses information

maintained by the descriptor manager to respond to getObjectClassHandle,

getObjectClassName, getAttributeHandle, getAttributeName,

getInteractionClassHandle, getInteractionClassName,

getParameterHandle, getParameterName, getObjectInstanceHandle,

getObjectInstanceName, getDimensionHandle, getDimensionName,

getDimensionUpperBound,

getAvailableDimensionsForClassAttribute,

getKnownObjectClassHandle, and

getAvailableDimensionsForInteractionClass.

C. XRTI EXECUTIVE

The XRTI Executive is a standalone application that hosts federation executions,

tracking their participants and object models and controlling the distribution of

information between federates. Users starting the executive on the command line can

provide configuration properties equivalent to those required by the XRTI Ambassador’s

initializeRTI method using the -C and -configuration arguments.

Arguments of the form –C<name>=<value> set single configuration properties,

whereas arguments of the form –configuration <filename> load configuration

 67

files containing multiple property mappings. As with the XRTI Ambassador, the

message.channel.factory property determines the subclass of

MessageChannelFactory that the XRTI Executive uses, and the executive passes

all configuration properties to the newFederateChannelAcceptor method. After

starting up, the XRTI Executive begins to accept connections from remote federates,

creating an ExecutiveClientAmbassador instance for each MessageChannel

returned by the MessageChannelAcceptor. As clients establish new federation

executions, the executive creates instances of FederationExecutionAmbassador

to manage them.

1. Message Channel Acceptors

The base class MessageChannelAcceptor provides an abstraction layer for

server objects, much as MessageChannel acts as an abstraction layer for

communication channels. After creating a MessageChannelAcceptor by invoking

the newFederateChannelAcceptor method of MessageChannelFactory, the

XRTI Executive uses the acceptor’s acceptMessageChannel method to wait for and

return the next incoming connection, as represented by a MessageChannel. The

acceptor’s close method releases its resources.

Instances of InternetMessageChannelAcceptor returned by the

DefaultMessageChannelFactory class open TCP server sockets on the port

identified by the executive.port configuration property. When the executive calls

acceptMessageChannel, they block until a connection is made and return an

InternetMessageChannel representing the connected socket.

2. Executive Client Ambassador

The ExecutiveClientAmbassador class is a protected subclass of

XRTIAmbassador whose instances represent the remote counterparts of federates’

XRTI Ambassadors. After being initialized with a reference to the owning

XRTIExecutive and the MessageChannel connected to the remote federate, the

executive client ambassador receives and processes interactions sent by the federate,

contacting the XRTI Executive and instances of

 68

FederationExecutionAmbassador when necessary. For instance, on receiving a

receiveHLArequestHandles invocation from the BOM proxy ambassador, the

executive client ambassador calls the XRTI Executive’s protected acquireHandles

method to reserve a block of handles from the executive’s global list, then sends an

HLAreportHandles interaction containing the block parameters to the remote

federate. In addition to BOM and MOM interactions, the executive client ambassador

subscribes to MFOM and ROM interactions by implementing the

MetaFederationInteractionListener and

ReflectionInteractionListener interfaces and registering with the MFOM

and ROM proxy ambassadors.

For the BOM’s HLAregisterObjectInstance, HLArequestAttributeValueUpdate,

HLAupdateAttributeValuesBestEffort, and HLAupdateAttributeValuesReliable

interactions, the executive client ambassador relays the information to the federation

execution ambassador corresponding to the joined execution. It does likewise for the

MOM’s HLAdeleteObjectInstance interaction. For the MOM’s publication and

subscription interactions, the executive client ambassador simply stores the handles of the

published and subscribed interaction classes and object class attributes, and uses them to

filter the interactions and attribute updates that the federation execution ambassador

relays from other federates. The MFOM’s HLAcreateFederationExecution,

HLAdestroyFederationExecution, HLAjoinFederationExecution, the MOM’s

HLAresignFederationExecution, and the ROM’s HLAmergeFDD all cause the executive

client ambassador to contact its owning XRTI Executive in order to create, destroy,

register with, deregister with, or update federation execution ambassadors.

3. Federation Execution Ambassador

Like ExecutiveClientAmbassador,

FederationExecutionAmbassador is a specialized subclass of

XRTIAmbassador. The XRTI Executive creates one

FederationExecutionAmbassador for each federation execution and uses it to

maintain that execution’s management and reflection objects as well as to broadcast

interactions and attribute value updates sent by federates. One of the federation

 69

execution ambassador’s most important methods is createReflectionObjects,

which takes a parsed FDD document as its parameter and uses it to create or update a set

of reflection objects corresponding to the features described by the FDD’s object model:

object classes and their attributes, interaction classes and their parameters, dimensions,

synchronizations, transportations, and data types. These reflection objects, created using

the ROM proxy ambassador and maintained as proxies, represent a dynamic version of

the federation object model that federates can extend using the mergeFDD method of

their XRTIAmbassador instances. The XRTI Executive calls each federation

execution ambassador’s createReflectionObjects method once when it creates

the execution, and again whenever an ExecutiveClientAmbassador receives an

HLAmergeFDD request.

Federation execution ambassadors maintain lists of

ExecutiveClientAmbassador instances corresponding to federates joined to their

executions. When a federate transmits an interaction, an attribute value update, or an

object creation or deletion event, its executive client ambassador forwards the message to

the federation execution ambassador, which broadcasts it to all registered client

ambassadors. The client ambassadors then determine whether to forward the message to

their connected federates according to their subscription parameters. Execution

ambassadors similarly track the names, handles, classes, and owners of all registered

objects, so that they can notify late joiners and late subscribers of the objects’ presence

and forward attribute update requests directly to the objects’ owners.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

V. INTEGRATION INTO NPSNET-V

A. PLATFORM OVERVIEW

NPSNET-V is a component-based, dynamically extensible platform for

networked virtual environment applications: clients, servers, peers, and standalone

products [NPSNET 03, NPSNET-V]. Like other virtual environment toolkits, NPSNET-

V includes modules for graphical rendering, user input, networking, and related tasks.

Unlike traditional toolkits, however, whose features are either restricted to those included

by their authors at the time of compilation, or which support limited run-time extension

through plug-in interfaces, NPSNET-V allows applications to extend or upgrade virtually

any aspect of its functionality at run-time. The vision behind dynamically extensible

architectures such as NPSNET-V is one of near-infinite reconfigurability. As an

example, consider a shared virtual world based on the NPSNET-V platform in which

each piece of the environment—every building, every vehicle, and every humanoid—is

the product of an independent code module. Developers insert new elements into the

environment by writing new code modules, uploading them to publicly accessible Web

servers, and instantiating them in the shared world. When users visit the world, their

clients automatically download the code modules corresponding to the world’s contents

and plug them into the client-side application environment. Once activated, the newly

downloaded modules become integral parts of the client, performing duties such as

rendering entities onscreen, calculating physical forces, transmitting and receiving

network updates, and processing mouse or keyboard input. As the world evolves, or as

the user enters new regions of the world, the client upgrades existing modules,

incorporates new modules, and unloads redundant modules as necessary to reflect the

state of the shared world. Taken to the extreme, this scenario reaches the point at which

every part of the client application—aside from a minimal microkernel—is downloaded

and integrated dynamically. Such is the ideal underlying NPSNET-V’s design.

 72

1. Component Framework

Achieving that ideal, however, requires that NPSNET-V be more than a

traditional toolkit or library for developers to link into their existing applications.

Instead, NPSNET-V provides a framework into which application developers must place

components, or modules: the atoms of the dynamic extension process. A typical

application might combine modules supplied with the NPSNET-V distribution with third-

party modules and modules written specifically for the application by its developer. Each

module is an instance of a Java class that inherits from

org.npsnet.v.kernel.Module, an abstract base class included in the NPSNET-V

kernel package. That package also includes the ModuleContainer and Kernel

classes. Modules whose classes are derived from ModuleContainer can contain

other modules, much as directories contain files in hierarchical file systems. The

Kernel, which is itself a ModuleContainer, acts as the equivalent of a root

directory. Each Module has a local name which distinguishes it from other modules in

the same container and a global path that identifies its position in the module hierarchy.

For instance, the absolute path /moduleContainer/module1 identifies a module

with the local name module1 contained within a module container named

moduleContainer that is in turn contained within the kernel. As in file systems,

relative paths such as ../module1 identify modules relative to a local context.

a. Module Life Cycle

After being instantiated as an object, each module undergoes a life cycle

whose phase transitions are controlled by the module’s container. After setting the

module’s local name and other properties, the container calls the module’s init method

to initialize the module. If the module implements the Startable interface, the

container also invokes the module’s start method, causing the module to create new

threads of execution or otherwise activate itself. In cases where modules must be hot-

swapped—that is, replaced with newer versions of themselves while they are still

running—the container coordinates a hand-off operation that involves calling the

replace method of the new module and the retire method of the old module,

allowing both modules to play an active role in the replacement process. The stop

 73

method causes modules to destroy any threads of execution that they have created, and

the destroy method returns modules to their pre-initialized state.

b. Interface Layer

In order for modules to communicate with one another directly using Java

method calls, they must share a common set of base classes or interfaces. The classes

included in the kernel package are common to all modules, but their methods are limited

to those necessary for system management. For application-specific interactions,

NPSNET-V provides an extensible interface layer that consists of all interfaces whose

archives are listed as dependencies by loaded modules. Because interfaces, unlike

modules, cannot be unloaded or replaced once they become part of the system, module

developers must exercise discipline in defining and publishing new interfaces. If, for

example, a published interface called ExampleInterface must be modified to

include a new method, its authors can only do so by extending it to create a new

interface, ExampleInterfaceEx or ExampleInterface2. The NPSNET-V

distribution includes two interface archives, properties.jar and services.jar,

whose contents represent the platform’s basic interface library. Property interfaces,

which are those that inherit from org.npsnet.v.kernel.PropertyBearer, and

service interfaces, which derive from

org.npsnet.v.kernel.ServiceProvider, perform special roles in the

NPSNET-V platform. For instance, the getPropertyBearers method of

ModuleContainer allows modules to retrieve lists of all modules within the container

that bear a given property. Similarly, the getServiceProvider method returns the

provider of a specific service, first checking the local container, then the parent container,

and so on up the module tree until a provider is found. Service providers, then, are

modules that provide specific kinds of functionality to entire application subgraphs.

c. Configuration and Serialization

NPSNET-V’s configuration and serialization mechanism allows

applications to record module hierarchies as version-safe XML documents suitable for

long-term storage and reactivation and for transmission between heterogeneous instances

 74

of the NPSNET-V environment. NPSNET-V supports two types of serialized

representations: configurations, which represent the states of individual modules, and

prototypes, which represent the modules themselves. Prototypes, which include

modules’ configurations as well as their class and dependency information, can be used

to stamp out multiple copies of modules, whereas configurations can only be applied to

existing modules. The default implementations of Module’s getConfiguration

and applyConfiguration methods use the extensible

PropertySerializationProvider and

ConfigurationElementInterpretationProvider services, respectively, to

generate and interpret XML configuration elements corresponding to known properties.

For instance, the default property serialization provider generates a Transform element

for modules implementing the

org.npsnet.v.properties.model.Transformable property with

translation, rotation, and scale attributes. For prototypes, each module stores

a number of objects that represent run-time dependencies, such as the module’s reliance

on a particular service. The getPrototype method of the Module class serializes

these dependencies into XML elements, and ModuleContainer’s createModule

method, which creates a new module based on a prototype, turns the dependency

elements back into objects and resolves them before instantiating the described module.

d. Bootstrapping and Extension

The typical course of execution for an NPSNET-V application begins with

a standard bootstrapping process initiated by the kernel. Unless directed otherwise, after

instantiating itself as a module in its static main method, the kernel loads a bootstrap

configuration file included with the NPSNET-V distribution. This file contains a single

configuration element that instructs the kernel to load the

org.npsnet.v.resource.StandardResourceManager module from the

resource.jar file. Upon initialization, the resource manager scans the local

NPSNET-V archive directory and creates a list of all available resources, including their

names, versions, and any metadata associated with them through their Java archive (jar)

manifests. The resource manager also attempts to establish connections with one or more

 75

Lightweight Directory Access Protocol (LDAP) resource servers. The entries in these

servers’ databases correspond to resources that developers have published for public use.

When a module requests a resource by name, the resource manager searches its local

database as well as any connected LDAP servers and returns the location of the latest

version. After loading the bootstrap configuration, the NPSNET-V kernel processes any

–configuration or –prototype arguments on its command line. These

arguments cause the kernel to apply configurations and instantiate prototypes,

respectively, in order to extend the framework. To load the NPSNET-V console, for

instance, one uses –prototype

resource:///org/npsnet/v/applications/console.xml to load the

latest version of the console prototype. After processing the command line arguments,

the kernel relinquishes control to the modules that it has loaded. If an application must

load other modules during the course of execution, it does so through the API provided

by the Module and ModuleContainer classes. Any module can, for instance,

extend the framework at any time by loading a prototype through the createModule

method of its container.

2. Entity Model

The NPSNET-V entity model, which represents virtual worlds and entities in

terms of modules in the framework, is based on the Model-View-Controller (MVC)

design pattern [Gamma 95]. The MVC pattern requires that the abstract state, or model,

of each entity be stored within a module that is separate from the modules used to depict

that state to the user, known as views, and from the modules used to manipulate that

state, called controllers. Entities within the NPSNET-V platform consist of a single

model, any number of loosely coupled views and controllers, and a scaffold module that

creates and destroys views, controllers, and sub-scaffolds according to changes in the

state of the application framework, to the information stored within the model, or to the

scaffold’s own internal policies.

 76

a. Models

Models are the central modules of NPSNET-V entities. They contain not

only the entities’ physical states, such as their positions and orientations, but also

serialized prototypes of views and controllers. The prototype of an entity model,

therefore, is a completely self-contained representation of a virtual entity, suitable for

instantiation in any context. The entity model classes contained in the NPSNET-V

distribution include generic entity, object, and world models suitable for direct use or as

base classes for extension; camera models; environment models; and terrain models.

Like other modules, entity models can be arranged in containment hierarchies. World

models, for instance, can contain entity models, and those entity models can contain other

entity models. The containment relationships between models affect the nature and scope

of model operations much as scene graph structures determine the rendering behavior of

high-level graphics APIs.

b. Views

View modules present the state of their target models to the user, typically

by interfacing with just such a graphics library. The hierarchy of view modules tends to

reflect that of the views’ corresponding models, so that a world model is associated with

an independent core view module, and the children of that world model are associated

with views contained in the view core. The view core creates and maintains the principal

interface to the graphics library, while the child views manage only the resources

required by their model representations. In the case of scene graph APIs, this means that

the view core creates the root of the scene graph and the child views create and control

nodes underneath that root. When the models change, they issue events that their views

interpret and use to modify their nodes. For immediate mode APIs, view cores request

once per frame that each child view read the state of its target model and render itself

accordingly. The NPSNET-V distribution includes modules for Java 3D, Java 2D,

OpenGL, and text views.

 77

c. Controllers

Controllers manipulate the state of their target models according to user

input, network updates, simulated physical interactions, or other stimuli. Like views,

controllers reside in hierarchies that reflect those of their target models, with controller

cores managing device interfaces and child controllers interpreting data specific to their

targets. The NPSNET-V distribution includes mouse and keyboard controllers; physics

controllers; and network controllers for DIS, HLA, XFSP, and XRTI communication.

The network controller modules are unique in that they must create ghost entities to

represent remote masters controlled by other clients on the network. When network

controller cores discover a new entity, they use the

org.npsnet.v.services.system.EntityTypeMappingProvider service

to obtain an NPSNET-V entity model prototype suitable for representing the entity

locally. The cores then add the entity to the framework by instantiating the prototype in

their target containers.

d. Scaffolds

When a new entity model appears within a model container, the scaffold

of that container creates a sub-scaffold module to manage the new entity’s views and

controllers. Scaffold modules create, update, and destroy view and controller modules

according to the prototypes stored within their target models, the views and controllers

associated with the model’s parent, and their own configurable policies. The view and

controller prototypes associated with each model include mode filters: boolean

expressions that act on sets of mode flags. For instance, prototypes bearing the filter

debug&(!ghost) apply only to models in debug mode that do not represent ghost

entities. The default view and controller policies will instantiate a prototype only if an

appropriate context exists and the mode filter of the prototype agrees with the mode flags

of the target.

 78

3. Application Structure

a. Test Applications

The NPSNET-V distribution supplies a number of test applications in the

form of configurations to be applied to the kernel. Each test provides an independent

demonstration of a particular module or category of functionality. The

org/npsnet/v/applications/tests/hla_networking.xml test, for

instance, acts as a simple test of HLA networking. It loads two sub-configurations—

hla_networking_a.xml and hla_networking_b.xml—that act as

independent clients running side-by-side in separate windows. After loading a series of

service providers, each client creates a simple world model containing a camera, a light,

and a teapot object. It then creates a scaffold module for the world model, instantiates a

Java 3D view within the scaffold, and opens a window for rendering. To add

interactivity to the scene, each client creates a physics controller, a user interface

controller, and an HLA controller for the world. Each teapot’s scaffold module then

loads a simple physics controller that integrates the teapot’s position and orientation over

time according to its velocity and acceleration; a mouse controller that allows the user to

move the teapot by clicking on it and dragging the mouse pointer; and an HLA controller

that transmits updates concerning the teapot’s state to the RTI. Once both clients have

loaded, each discovers the other’s teapot entity and creates a corresponding ghost entity.

The final result is one of two onscreen windows, each with two teapots, where moving a

teapot in one window causes its ghost in the other window to move in an identical

fashion.

b. Browser Environment

In addition to its test applications, the NPSNET-V distribution includes an

extensible browser environment [Kapolka 03]. This environment allows its users to

browse existing shared virtual worlds, build worlds of their own, publish their worlds to

LDAP resource servers, and host their worlds within the NPSNET-V framework. Its

principal interface closely resembles a standard Web browser, including navigation

buttons, an address bar, a bookmark menu, and a preference manager. The browser’s

 79

collection of content handlers allows it to display images, VRML models, HTML pages,

and other kinds of data in addition to NPSNET-V configurations and prototypes.

Entering a URL beginning with module:/ into the address bar causes the browser to

display a tree view of modules loaded within the NPSNET-V framework, allowing users

to add, remove, or otherwise manipulate loaded modules. Similarly, URLs beginning

with resource:/ display sections of the resource tree. From there, users can view

resource metadata and select resources to display. When a user selects a world prototype,

the browser loads the world into the framework, creates a default view for it, and shows

that view in the browser window. The user can then create new entities within the world,

manipulate them using controllers or context menus, and publish the world by uploading

its prototype to a Web server and publishing its metadata to a resource directory. The

browser environment also includes HTTP and Telnet server modules that let users host

worlds within the environment. The HTTP prototype server, for instance, allows remote

clients to instantiate prototypes using the HTTP PUT method, to retrieve prototypes with

the GET method, to modify modules using the POST method, and to remove modules

using the DELETE method. The Telnet console server allows users to log into the

NPSNET-V console from remote sites in order to observe and manipulate the state of the

framework. Together, these modules provide the means to establish unattended world

server sites.

B. HLA CONTROLLERS

NPSNET-V’s HLA controller modules exchange entity state using the older, 1.3

version of the HLA standard as opposed to the IEEE 1516 version. Most commercial

RTIs conform to this older standard, which differs from the newer one in several minor

ways. Its data files, for instance, use an S-expression syntax as opposed to an XML

dialect. Also, it uses integers rather than type-safe objects for feature handles. NPSNET-

V’s HLA controllers rely on the Realtime Platform Reference Federation Object Model

(RPR-FOM), and have been tested with both the DMSO RTI-NG 1.3v6 [DMSO 03, RTI]

and the MÄK RTI v2.0.3 [MÄK 03].

 80

1. HLAControllerCore

The HLAControllerCore module is the root of the HLA controller hierarchy,

and as such it is responsible for creating and managing the interface to the RTI and for

creating entities in response to the discovery of new object instances. In its constructor,

the controller core creates an RTIambassador instance. In its init method, it

attempts to create a federation execution with the name “NPSNET-V” using a federation

description document that contains the RPR-FOM. If the RTI succeeds in creating the

execution, or if the execution already exists, the controller core then joins the execution

(passing a reference to itself as federate ambassador in order to receive callbacks from the

RTI), fetches the handles of the features that it must use, and publishes and subscribes to

the interaction classes and object class attributes that it must generate and interpret.

When the RTI notifies the controller core of a new object instance through the callback

interface, the controller core waits until it has received the object’s entity type, then

consults the EntityTypeMappingProvider service to obtain an appropriate ghost

prototype. After instantiating the ghost, the controller core waits for the appearance of

the ghost’s HLAController module, then configures that controller with information

received from the RTI.

2. HLAController

The HLAController property interface allows the controller core to interact

with its children, HLA controllers that correspond to master and ghost entities within the

world. For master entities, the controller core calls the registerObjectInstance

method to request that the controller register its corresponding object instance with the

RTI ambassador, then calls getObjectHandle to retrieve the handle of that instance.

For ghost entities, the controller core passes the handle of the discovered object instance

to the controller’s setObjectHandle method. When the controller core receives

attribute value updates, update requests, or object instance removal messages, it forwards

the message to the appropriate HLAController based on its internal list of instance

handle mappings. Once per second, the controller core also calls the

generateHeartbeat method of all of its contained controllers, causing them to emit

their complete state for the benefit of late-joining federates.

 81

3. HLAPlatformController

The HLAPlatformController module is an implementation of the

HLAController interface for platform entities. It reads the state of its target entity

through the Transformable, Inertial, and Accelerable property interfaces,

and transmits that state through the WorldLocation, Orientation, VelocityVector,

AngularVelocityVector, and AccelerationVector attributes of the RPR-FOM BaseEntity

object class. In order to minimize network traffic, HLAPlatformController uses a

dead-reckoning algorithm to extrapolate position and orientation over time. On the

sending side, the master controller extrapolates the position of the model over time and

only transmits an update when the entity deviates from its predicted course. On the

receiving side, the ghost controller extrapolates the position of the entity based on the last

set of values received. When the ghost controller receives a new set of values, rather than

abruptly changing the position of its target model, it causes the model to converge

smoothly upon the updated course. This behavior helps to preserve the user’s sense of

realism and immersion by avoiding sudden, incongruous movements.

C. XRTI CONTROLLERS

NPSNET-V’s XRTI controllers closely resemble its HLA controllers, but they

differ in that they use the XRTI’s utility and proxy classes in addition to the HLA API

defined by IEEE 1516.1. Before it compiles the XRTI controllers, NPSNET-V’s build

script uses the XRTI’s CompileProxiesTask to generate a set of proxies

corresponding to the contents of the RPR-FOM. From the 11,281 line long RPR-FOM

FDD, the proxy compiler generates 176 classes with 21,499 non-comment source

statements and 2,049 lines of Javadoc comments. The XRTI controllers use these

autogenerated proxy classes to interact with the federation execution in terms of the RPR-

FOM.

1. XRTIControllerCore

The XRTIControllerCore creates an instance of XRTIAmbassador in its

constructor and, in its init method, uses that ambassador to create and join a federation

execution. As with HLAControllerCore, the XRTI controller core attempts to create

 82

an execution with the name “NPSNET-V” and the RPR-FOM FDD. After creating an

instance of ProxyAmbassador and passing a reference to it to the

XRTIAmbassador’s joinFederationExecution method, the

XRTIControllerCore creates an instance of RPRProxyAmbassador and

registers it with the proxy ambassador in order to send and receive interactions and

attributes defined in the RPR-FOM. Having registered as a

ProxyAmbassadorListener with the RPRProxyAmbassador, the

XRTIControllerCore receives a notification whenever that ambassador creates a

new object instance proxy in response to the discovery of a remote object instance.

When that happens, the controller core adds itself as a listener to the proxy in order to

determine its entity type. Once it has received the required type information, it uses the

EntityTypeMappingProvider to obtain an appropriate corresponding prototype,

then instantiates that prototype within its target container.

2. XRTIController

When the prototype’s XRTI controller module appears, the controller core uses

the setRTIAmbassador and setProxyAmbassador methods defined in the

XRTIController property interface to set the controller’s references to the

XRTIAmbassador and the RPRProxyAmbassador, respectively. If the controller

corresponds to a remote ghost, then the controller core uses the

setObjectInstanceProxy method to set the controller’s proxy reference to the

proxy that was automatically created by the RPRProxyAmbassador. Otherwise, if the

controller targets a locally owned entity model, then the controller core calls the

createObjectInstanceProxy method to request that the controller use its

reference to the RPRProxyAmbassador to create an appropriate proxy object. Like

HLAController, XRTIController has a generateHeartbeat method that the

controller core calls once per second. XRTI controllers can emit their complete state

easily by invoking the flushAttributeValues methods of their object instance

proxies with the superFlush parameter set to true.

 83

3. XRTIPlatformController

Like HLAPlatformController, XRTIPlatformController is an

XRTI controller for platform entities that uses dead-reckoning with smoothing to limit

bandwidth usage while retaining first-order continuity of motion. For local master

entities, XRTIPlatformController compares the position of its target to the

remotely predicted position, calling the emitEntityState method when the

difference exceeds a set threshold. That method updates the position of the object

instance proxy by calling its setWorldLocation, setOrientation,

setVelocityVector, setAngularVelocityVector, and

setAccelerationVector methods, then calling its flushAttributeValues

method to transmit a message containing all of the updated values. For remote ghost

entities, the XRTI platform controller adds itself as a BaseEntityListener to its

object instance proxy, updating its predicted position whenever it receives a state change

notification through its WorldLocationUpdated, OrientationUpdated,

VelocityVectorUpdated, AngularVelocityVectorUpdated, or

AccelerationVectorUpdated callback methods.

D. INTEGRATION SUMMARY

Integrating the XRTI into NPSNET-V, a dynamically extensible component

architecture for networked virtual environments, requires the presence of a set of XRTI

controller modules. These modules, which are closely based on NPSNET-V’s existing

HLA controller modules, use constructs defined in the RPR-FOM to exchange state data

concerning the virtual world and entity models that they control. NPSNET-V’s Ant build

script invokes the XRTI proxy compiler in order to turn an XML FDD into a complete set

of RPR-FOM proxy classes. The XRTI controller modules use these autogenerated

proxies along with the XRTI library to communicate with other federates. For platform

entities, the controller modules use dead-reckoning with first-order smoothing to transmit

position, velocity, and acceleration attributes. With the development of the XRTI

prototype and the integration process complete, the next step is to test the XRTI both

independently and within the context of an NPSNET-V environment.

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

VI. TESTING

A. TEST APPLICATIONS

1. HelloWorld

To demonstrate its basic functionality, the XRTI includes a test application,

org.npsnet.xrti.tests.HelloWorld, modeled after the one included with the

DMSO RTI. Like DMSO’s, the XRTI’s HelloWorld represents a very simple

distributed simulation of population growth. The application uses a minimal object

model, included as HelloWorldObjectModel.xml, to communicate information

concerning a number of countries. That object model contains one object class, Country,

with two attributes: name, a string, and population, a double-precision floating point

variable. It also contains an interaction class, Communication, with a single parameter: a

string-valued message. The XRTI’s build script compiles

HelloWorldObjectModel.xml into a set of proxies for the HelloWorld

application to use.

The application itself takes three parameters: the name of a country, the country’s

initial population, and the number of time steps to simulate. On startup, HelloWorld

creates and initializes an instance of XRTIAmbassador, attempts to create a federation

execution called “HelloWorld” with HelloWorldObjectModel.xml as its FDD,

creates a ProxyAmbassador instance and passes it to the RTI ambassador’s

joinFederationExecution method, and creates and registers an instance of

HelloWorldProxyAmbassador in order to transmit and receive messages

associated with the HelloWorld object model. After adding itself to that proxy

ambassador as an interaction listener, HelloWorld uses the ambassador’s

newCountry method to create a new instance of CountryProxy and thus a new

locally-owned object instance. After calling the proxy’s setName and

setPopulation methods in order to set the country’s name and initial population to

the values passed on the command line, HelloWorld enters its main simulation loop.

For the number of time steps requested, HelloWorld increases the country’s

 86

population by one percent, prints out the names and populations of all country proxies

tracked by the HelloWorldProxyAmbassador, and waits for a half-second before

performing the next iteration. At every tenth time step, HelloWorld also invokes the

sendCommunication method of HelloWorldProxyAmbassor, transmitting the

message “Hello from [country name]” to all of the other federates. After completing the

requested number of time steps, HelloWorld resigns from the federation, deletes the

execution if it is the last federate to leave, and finalizes its RTI ambassador.

Below is a sample of the output generated by an instance of HelloWorld

invoked with the command line parameters USA 10 500, run in conjunction with

another instance whose command line parameters were UK 10 500.

XRTIAmbassador: Connected to executive
XRTIAmbassador: My handles start at 8589934592
XRTIAmbassador: Created execution HelloWorld
XRTIAmbassador: Joined execution HelloWorld (4294967296)
USA 10.1

Sent communication: Hello from USA

USA 10.201

USA 10.30301

USA 10.4060401

USA 10.510100501

USA 10.615201506010001

Got communication: Hello from UK
UK 10.1
USA 10.721353521070101

UK 10.201
USA 10.828567056280802

Figure 4. Sample output from the HelloWorld test application.

2. HelloWorldEx

The supplementary HelloWorldEx test application demonstrates the XRTI’s

support for extensible object models. It is nearly identical to the HelloWorld

application, but its object model includes two new classes: EconomicCountry, which

extends Country to include a double-valued grossDomesticProduct attribute, and

PrioritizedCommunication, which extends Communication with the double-valued

 87

priority parameter. HelloWorldEx takes the initial gross domestic product (GDP) as

another command line parameter, to be included between the initial population and the

number of time steps to execute. After joining the “HelloWorld” federation execution,

instances of HelloWorldEx merge the extended

HelloWorldObjectModelEx.xml object model into that execution’s FOM. When

they do so, they gain the ability to create instances of EconomicCountry and to send

PrioritizedCommunication messages, even if the execution was originally established by

an instance of HelloWorld using the unextended HelloWorldObjectModel.xml

as its FDD. After performing the merge, instances of HelloWorldEx create

EconomicCountry objects and simulate the growth of both their populations and their

GDPs over time. Instead of Communication interactions, HelloWorldEx instances

send PrioritizedCommunication interactions with random priority values at every tenth

time step.

The sample output below results from running an instance of the

HelloWorldEx application with parameters USA 10 100 500 immediately after

starting an instance of the HelloWorld application with parameters UK 10 500.

XRTIAmbassador: Connected to executive
XRTIAmbassador: My handles start at 17179869184
XRTIAmbassador: Created execution HelloWorld
XRTIAmbassador: Joined execution HelloWorld (4294967296)
USA 10.1 101.0

Sent communication with priority 0.01: Hello from USA

UK 10.828567056280802
USA 10.201 102.01

UK 10.93685272684361
USA 10.30301 103.0301

UK 11.046221254112046
USA 10.4060401 104.060401

Got communication: Hello from UK
UK 11.156683466653167
USA 10.510100501 105.10100501

Figure 5. Sample output from the HelloWorldEx test application.

 88

B. THESIS EXPERIMENT

1. Overview

The purpose of the thesis experiment is to verify that the XRTI can provide a

small-scale networked virtual world with a communications infrastructure whose

performance is comparable to that of two commercial RTIs. The test world consists of a

very simple NPSNET-V configuration, similar to the HLA networking test described in

section V.A.3.a, that contains a shark swimming in a circle around the origin. The

experiment involves invoking two instances of the client on separate machines, where

each client creates a shark entity of its own as well as a Java 3D window that displays a

top-down view of both sharks. For each of the three RTIs—the XRTI and the two

commercial RTIs—the experiment involves recording over a fixed interval four

performance metrics: average frame rate, average interaction latency, CPU usage, and

network traffic volume. To capture the first two metrics, the experiment requires slight

changes to the NPSNET-V codebase. For the second two, third party software tools are

sufficient. The hypothesis of the thesis experiment states that the XRTI provides a level

of performance that is equal to or better than that of the commercial RTIs in all four

metrics.

2. Setup

a. Hardware

The hardware required for the thesis experiment consists of two computers

connected by a 100 Mbps local area network (LAN). Computer A has a 1 gigahertz Intel

Pentium III processor, 512 megabytes of system memory, and a GeForce FX 5900 Ultra

graphics card with 256 megabytes of video memory. Computer B has a 2 gigahertz Intel

Pentium IV processor, 512 megabytes of system memory, and a GeForce GTS graphics

card with 64 megabytes of video memory.

b. Software

The software involved in the thesis experiment consists of the Microsoft

Windows operating system, the Java Runtime Environment (JRE) by Sun Microsystems,

 89

a version of NPSNET-V modified to measure average frame rate and interaction latency,

the shark world configuration, the RTIs to be tested, and the testing utilities. Both

Computer A and Computer B have Windows 2000 and the 1.4.1 version of the JRE

installed.

The version of NPSNET-V used in the thesis experiment contains a

modified version of the J3DViewCore module that reports on request its average frame

rate over an interval of time. When the user presses the ‘f’ key, the J3DViewport class

associated with the Java 3D view core module records the current time and clears the

value of its frame count variable. Each time the viewport renders a frame, it increments

the frame count. When the user presses the ‘f’ key again, the viewport computes the

average frame rate by dividing the number of frames rendered by the amount of time

elapsed, then prints the result to the standard output device.

The versions of HLAControllerCore and XRTIControllerCore

used in the thesis experiment measure average interaction latency over time by

exchanging special ping interactions with other federates. The versions of the RPR-FOM

used by these modules contain two extra interaction classes, ReliablePing and

BestEffortPing, each with two long-valued parameters: PingID and PingTime. Once per

second, each controller core transmits both a reliable ping and a best-effort ping. Both

pings include as their parameters a randomly generated identifier and the current time in

nanoseconds as generated by the high-resolution J3DTimer class. After sending each

ping, the controller cores record the ping’s identifier. When the cores receive pings from

other federates, they check the pings’ identifiers against their recorded lists. Pings with

identifiers that are not on the list are retransmitted exactly as received. Retransmitted

pings with identifiers that are on the list—that is, pings that have traveled to another

federate and back—cause the cores to increment their reliable or best-effort ping counts

and to add the pings’ round-trip intervals to their accumulated reliable or best-effort ping

times. When the user presses the ‘f’ key, the controller cores compute the average round-

trip times for reliable and best-effort pings by dividing the total number of pings in each

category by their corresponding time totals. They then print the resulting metrics to the

standard output device.

 90

The thesis experiment requires two versions of the shark world

configuration: one for the commercial HLA RTIs and one for the XRTI. Like the HLA

test configuration described in section V.A.3.a, both versions load a series of service

providers; a simple world model with a light, a camera, and an entity; a scaffold for the

world model; a Java 3D view core with a single onscreen window; a physics controller

core; and a user interface controller core. Rather than a user-controlled teapot, however,

the entity in the thesis experiment configuration is a shark whose

SplinePathController causes it to swim endlessly in a circle about the origin.

The world’s camera points straight down, and resides at a sufficient distance from the

origin to ensure that the shark is always visible in the Java 3D window. The HLA

version of the shark world configuration contains an HLAControllerCore, also, and

the XRTI version contains an XRTIControllerCore.

The commercial RTIs involved in the thesis experiment are the DMSO

RTI-NG 1.3v6 and the MÄK RTI v2.0.3. Both RTIs require the use of dynamically

linked libraries (DLLs); the DMSO RTI also requires the presence of an RTI executive.

Only the DMSO RTI includes Java bindings, but since the MÄK RTI is link-compatible

with the DMSO RTI, one can easily use DMSO’s bindings to interface with it. The

version of the XRTI used in the experiment is the initial prototype version described in

earlier sections of this thesis.

The Java Memory Profiler (JMP) [Olofsson 03] and NetWorx [SoftPerfect

03] round out the experiment’s list of required software. The JMP is a profiling utility

for Java that measures, among other things, the relative amount of time spent in methods

of interest by continually sampling the call stack of the Java Virtual Machine. NetWorx,

in its Speedometer mode, measures the average transfer rate, maximum transfer rate, and

total data transferred over the network in both incoming and outgoing directions.

c. Procedure

The experimental procedure involves setting up two clients running the

shark world configuration in NPSNET-V and recording the performance characteristics

of one client over a five-minute interval using each of the three RTIs. To ensure that

 91

bursts of LAN traffic do not interfere with the experiment, the tests are conducted at

night, when network usage is at a minimum. Computer A runs the untracked client as

well as the necessary servers: the DMSO RTI executive and the XRTI Executive.

Computer B runs the tracked client along with the performance measurement utilities.

Because using the JMP significantly slows the Java Virtual Machine, each CPU usage

metric comes from a run that is separate from the one used to gather the other metrics.

The steps of the procedure are as follows.

• Running the DMSO RTI executive on Computer A and NetWorx on

Computer B, activate the HLA shark world configuration on both

computers. On Computer B, press ‘f’ and begin the NetWorx

speedometer, wait five minutes, press ‘f’ again, and record the results: the

average frame rate and interaction latency as reported by NPSNET-V, and

the average incoming and outgoing transfer rates as reported by NetWorx.

Shut down the shark world on Computer B.

• Restart the shark world on Computer B with JMP active. Wait five

minutes, then record the amount of time spent in the representative

emitEntityState method of HLAPlatformController. Shut

down the shark world on both computers, and stop the RTI executive on

Computer A.

• Replace the DMSO DLLs on both computers with the corresponding

MÄK DLLs and repeat steps 1 and 2.

• Running the XRTI Executive on Computer A, using the XRTI shark world

configuration instead of the HLA one, and tracking

XRTIPlatformController’s emitEntityState method instead

of HLAPlatformController’s, repeat steps 1 and 2.

The resulting data consists of three sets of performance measurements:

one for the DMSO RTI, one for the MÄK RTI, and one for the XRTI. Each set contains

the average frame rate in frames per second, the average best-effort and reliable round-

trip interaction latencies in milliseconds, the average incoming and outgoing network

 92

transfer rates in kilobytes per second, and the representative CPU usage in terms of the

number of seconds spent in the emitEntityState method.

3. Hypothesis

The hypothesis of the thesis experiment states that the XRTI matches or exceeds

the performance of the DMSO and MÄK RTIs in terms of all measurements to within a

five percent margin of experimental error. The reasoning behind this hypothesis is that

although the XRTI’s internal implementation and the implementation of its autogenerated

proxy classes involve routing messages through several layers of indirection, and

although Java libraries are typically slower than their native code counterparts, these

performance impediments are not severe enough to limit the XRTI’s efficiency to the

point where it is slower than commercially available RTIs. Also, because both NPSNET-

V and the XRTI are implemented in pure Java, whereas the DMSO and MÄK RTIs rely

on Java bindings to native code, the XRTI has a performance advantage in that it avoids

the inefficiency of transmitting messages through the Java Native Interface (JNI).

4. Results

The results of the thesis experiment follow, first as a table containing all recorded

data, and then as a set of four graphs depicting each category of measurements for

purposes of visual comparison.

 DMSO MÄK XRTI

Average frame rate (FPS) 42.4 48.1 49.3

Average best-effort interaction latency (ms) 32.8 17.3 6.5

Average reliable interaction latency (ms) 38.7 17.3 5.7

Average incoming network transfer rate (KB/s) 25.8 16.4 8.1

Average outgoing network transfer rate (KB/s) 16.1 11.0 15.0

Time spent in emitEntityState method (s) 6.0 3.0 3.0

Table 39. Results of the thesis experiment. The four rows of the data represent the
different performance metrics; the three columns represent the RTIs tested.

38

40

42

44

46

48

50

DMSO MÄK XRTI

Fr
am

es
 p

er
 s

ec
on

d

Average frame rate

Figure 6. Graph of average frame rates.

0

5

10

15

20

25

30

35

40

45

DMSO MÄK XRTI

M
ill

is
ec

on
ds Average best-effort interaction

latency
Average reliable interaction
latency

Figure 7. Graph of average interaction latencies.

 93

0

5

10

15

20

25

30

DMSO MÄK XRTI

K
ilo

by
te

s
pe

r s
ec

on
d

Average incoming network
transfer rate
Average outgoing network
transfer rate

Figure 8. Graph of average network transfer rates.

 94

0

1

2

3

4

5

6

7

DMSO MÄK XRTI

Se
co

nd
s

Time spent in emitEntityState
method

Figure 9. Graph of times spent in emitEntityState method.

5. Analysis

With one noteworthy exception, the results of the thesis experiment agree strongly

with the hypothesis that the XRTI provides a level of performance equal to or exceeding

the levels provided by commercial RTIs. In general, the MÄK RTI performs

significantly better than the DMSO RTI, and the XRTI performs slightly better than the

MÄK RTI. This is best demonstrated by comparing the frame rates of the three RTIs.

The most dramatic difference in performance lies in the interaction latencies, where the

MÄK RTI experiences about half the delay of the DMSO RTI, and the XRTI experiences

about half the delay of the MÄK RTI. Possible causes for this may include the added

latency involved in transmitting messages from Java code to native code using the JNI, or

fundamental differences in the underlying network architectures of the RTIs. Comparing

the times spent in the emitEntityState method suggests that the DMSO RTI’s

attribute update methods may involve some delay in contrast to the faster MÄK and

XRTI update methods.

 95

 96

The discrepancy in the results lies in the network transfer rates, where the XRTI’s

average outgoing transfer rate is quite high—significantly higher than that of the MÄK

RTI and nearly twice as high as its own incoming transfer rate. The most likely

explanation for this behavior is that the faster CPU speed of Computer B, a 2 GHz

machine as opposed to Computer A’s 1 GHz, combined with the relative efficiency of the

XRTI, allows Computer B to send out network updates at a significantly higher rate than

that managed by Computer A. For future tests, using computers with identical feature

sets should provide more consistent results.

 97

VII. CONCLUSION

A. PROJECT SUMMARY

The Extensible Run-Time Infrastructure, or XRTI, is an open-source

implementation of the IEEE 1516 High Level Architecture (HLA) standard with features

designed to enhance ease-of-use, promote RTI interoperability, and enable dynamic

object model extension and composition. The thesis project described by this document

encompasses the design, implementation, and testing of the initial XRTI prototype, as

well as the XRTI’s integration into NPSNET-V, a dynamically extensible platform for

networked virtual environments. In the context of a typical NPSNET-V environment, the

performance of the XRTI matches or exceeds the performance of commercial RTIs. This

fact, combined with the XRTI’s open-source status, its comparative ease-of-use, and its

support for dynamic extension, make the XRTI a better choice than commercial RTIs for

networking between NPSNET-V instances.

The motivation behind the XRTI’s development is the need for a standardizable

communication mechanism for exchanging state data between the software components

that support large-scale, long-running shared virtual worlds. Such a mechanism must be

generalized enough to support any kind of environment, flexible enough to incorporate

new kinds of data on the fly, efficient enough to meet the high performance requirements

of interactive applications, and straightforward enough to encourage widespread

acceptance. The HLA, a middleware standard for distributed simulations, is the most

likely basis for such a mechanism. It is fully generalized, and its status as a middleware

interface allows federate developers to concentrate on the data to be transferred as

opposed to the network protocols that transport the data. Unlike the Common Object

Request Broker Architecture (CORBA) and other generalized middleware interfaces, the

HLA also includes features specifically useful to simulations, such as region-based

filtering. However, the HLA cannot in itself solve the problem of providing universal

interoperability, allowing all virtual environment applications to communicate with one

another. Its lack of a common network protocol, the awkwardness of its interface, its

 98

inability to extend live object models, and the fact that there are no open-source RTIs

significantly limit the HLA’s usefulness to virtual world developers.

The XRTI, therefore, represents an attempt to resolve the HLA’s shortcomings in

order to create a candidate standard for promoting interoperability between all networked

virtual environment applications, including applications such as NPSNET-V whose

communication ontologies change when they load new code modules. To conceal the

HLA’s awkward interface, the XRTI includes a proxy compiler that converts HLA FOM

Document Data (FDDs) into sets of easy-to-use, type-safe Java proxy classes. To ease

the process of defining a common message protocol for RTIs, the XRTI uses a novel

bootstrapping technique to define its network protocols and other low-level

communication elements in terms of HLA constructs and encodings. To allow federates

to introduce new object and interaction classes without interrupting the federation

execution, the XRTI provides a reflection mechanism that represents the federation object

model (FOM) of each execution as a manipulable set of shared object instances. Finally,

to ensure that federate developers always have access to an RTI that they can redistribute

freely with their applications, to allow developers to examine the internal implementation

of that RTI for diagnostic and educational purposes, and to provide a test bed for

experimental RTI modifications and extensions, the XRTI is available for download on

the World Wide Web under the very flexible Berkeley Systems Distribution (BSD) open-

source license.

In order to test the XRTI, the Web-accessible distribution includes both

standalone test applications and controller modules for NPSNET-V. NPSNET-V, a

component-based platform for networked virtual environment applications, uniquely

demonstrates a need for the XRTI’s object model extension capability. Applications

constructed on the NPSNET-V platform can dynamically add, remove, and replace parts

of themselves at run-time in order to modify their functionality in response to changes in

their simulated environments, upon the release of new versions of their code modules, or

simply at the request of the user. When applications effect these changes, their

networking modules must similarly adapt, extending their communication ontologies to

include new constructs capable of representing new types of information. Unlike the

 99

commercial RTIs used to test NPSNET-V’s HLA controller modules, the XRTI provides

explicit support for this kind of extensibility. In addition, a series of tests comparing the

performance of the XRTI to that of the commercial RTIs shows that the XRTI’s

performance is quite competitive, and that even the XRTI prototype described in this

thesis is able to meet the communication requirements of small shared virtual worlds.

B. FUTURE WORK

The initial XRTI prototype, however, represents only the beginning of what could

be a complex and long-running project devoted to creating a full-featured and stable

extensible RTI, to developing compelling demonstrations of the XRTI’s functionality,

and to augmenting the HLA standard with the extensions proposed in this thesis. Such a

project would involve the investigation of many different areas, including both technical

work and participation in the HLA community.

1. Widening Conversions

One of the first technical issues to investigate is that of widening conversions,

which will allow federates to deal with unfamiliar constructs by representing them in

terms of less specific, familiar ones. In object-oriented programming, if class B is a

subclass (direct or otherwise) of class A, then the act of converting a B reference to an A

reference is known as a widening cast, and the conversion of an A reference to a B

reference is known as a narrowing cast. As the following Java code snippet

demonstrates, widening casts can be performed implicitly, whereas narrowing casts must

be explicitly stated, and can generate errors at run-time.

A a1 = new A(), a2;
B b1 = new B(), b2;

a2 = b1; // Widening cast, implicit

b2 = (B)a2; // Narrowing cast, explicit

b2 = (B)a1; // Illegal narrowing cast, throws
 // java.lang.ClassCastException

Figure 10. Widening and narrowing casts in Java. Class B is a subclass of class A.

 100

For the XRTI, widening conversions will allow federates subscribed to object and

interaction classes to receive interactions and object instance updates associated with

derived classes. For an interaction class A and its subclass, B, the current version of the

XRTI only reports B interactions to federates explicitly subscribed to B, not to federates

subscribed only to A. Similarly, for an object class A and subclass B, federates only

discover instances of B if they are subscribed to B. With support for widening

conversions, the XRTI will report B interactions to all federates subscribed to interaction

class A, and all federates subscribed to object class A will discover instances of B as well.

Enabling this behavior is especially important for extensible applications, which must be

able to interpret newly added constructs in terms of the constructs that they already

understand. The widening process supports this by simply discarding the extra

information unique to the new subclass. This form of representational flexibility is

similar to that attributed to markup languages such as the Hyper-Text Markup Language

(HTML) and the Extensible Markup Language (XML). Typically, when applications

encounter elements or attributes that they do not understand in HTML or XML

documents, they simply ignore them. This provides a level of forward compatibility,

allowing applications to process data intended for later versions of themselves, as well as

a certain robustness to heterogeneity, in that applications can choose to consume only the

data that is relevant to their current configurations.

2. Extensible FOMs in NPSNET-V

As currently constructed, the NPSNET-V XRTI controller core does not provide

an interface for its contained controller modules to extend the Realtime Platform

Reference FOM (RPR-FOM) upon which it is based in order to introduce new constructs

into active worlds. In order for NPSNET-V to take advantage of the XRTI’s support for

extensible object models, any of the XRTI controllers hosted by the controller core must

be able to merge arbitrary FDDs into the execution’s FOM and use proxies based on

those FDDs to send new types of interactions and instantiate new kinds of object

instances. Using NPSNET-V’s resource identification system to track FDDs as named,

versioned resources will prevent the XRTI controller core from having to upload an FDD

to the XRTI Executive each time it loads a new sub-controller. Instead, the controller

 101

core will remember the FDDs that it has already merged into the execution, and will only

merge entirely new FDDs, or FDDs that represent newer versions of the ones already

merged.

3. Supporting the Complete HLA Standard

The XRTI prototype does not, as it stands, represent a complete implementation

of the HLA standard. Although it is usable for small-scale networked virtual

environments of short duration, its lack of several critical services prevents it from

supporting the complete range of distributed simulations for which the HLA is designed,

as well as from supporting the large-scale, long-running networks of shared virtual

worlds whose establishment is the XRTI project’s long-term goal.

a. Ownership Management

The HLA’s ownership management service ensures that at any given time,

only one federate can own each attribute of each object instance, and that only an

attribute’s owner can update its value. Federates can transfer attribute ownership through

a cooperative hand-off process, where both federates involved must agree to the transfer.

Additionally, when a federate leaves the federation execution, rather than deleting the

object instances that it has created, it can choose to divest ownership of their attributes to

the first federate that claims it. For the XRTI, ownership management will be controlled

by the XRTI Executive, which will have to keep track of the owner of each attribute of

every object instance, acknowledging ownership transfers and rejecting attribute value

updates sent by non-owners. The XRTI’s proxy compiler will have to accommodate the

ownership management service as well, supplying divest and acquire methods for

each attribute and providing a means for federates to select either automatic or controlled

attribute acquisition and divestiture.

b. Time Management

Time management is required to support simulations that do not operate in

real-time. In discrete event simulation, for instance, the logical time of the simulation

can advance in fixed time steps, or it can jump ahead varying lengths according to the

timing of the events being simulated. Neither case requires the rate at which time

 102

advances to bear any relation to wall-clock time, and thus the simulation is free to take

full advantage of the processor time allocated to it, executing time steps or processing

events as fast as possible. HLA federates must be synchronized by the RTI in order to

achieve this ability in a distributed environment. Every federate subject to time

management has both a logical time and a lookahead interval, and must choose whether it

is to be time-constrained, time-regulating, both, or neither. Time-constrained federates

must wait for notification before they can advance their logical times, and time-regulating

federates can request time advances from the RTI. At any time, federates cannot send

events with time stamps less than the value of their logical times plus their lookahead

intervals. This allows the RTI to collect the events sent by each federate, sort them in

time stamp order, and deliver them to the other federates without ever requiring a

federate to process an event that occurred in its past.

In order to support time management, the XRTI Executive will have to

track the logical times and lookahead intervals of all connected federates, processing time

advance requests from the time-regulating ones and granting time advances to the time-

constrained ones. Also, since time management involves associating time stamps with

events such as interactions and attribute value updates, the proxy compiler will have to

include additional versions of the sendX methods of each proxy ambassador class, the

receiveX methods of each interaction listener interface, the setX methods of each

object instance proxy class, and the xUpdated methods of each object instance listener

interface, each with a time stamp parameter added to its original argument list.

c. Data Distribution Management

Data distribution management (DDM) allows each federate to filter the

events that it receives according to the overlap between its region of interest and the

events’ regions of influence. Each region contains minimum and maximum extents in a

number of logical dimensions, where each dimension may correspond to a spatial

dimension, a time axis, a functional range, or some other type of dimension as defined by

the FOM. In order for two regions to overlap, their extents must overlap in every

dimension. Under DDM, federates specify subscription regions when they subscribe to

interaction classes or object class attributes, and associate region sets with the events that

 103

they send. The RTI considers the subscription parameters of each federate when it

processes these events, notifying only the federates whose subscription regions overlap

with the event regions. For the XRTI to support DDM, the XRTI Executive will have to

track the subscription parameters of each federate and be able to accept events with

associated region sets. As with time management, the proxy compiler will have to

generate modified versions of the sendX, receiveX, setX, and xUpdated methods.

For DDM, the extra methods must include region sets among their parameters.

d. Other Services

The other services missing from the XRTI prototype are event retraction,

synchronization, and federation save/restore. Event retraction, in which the invocation of

each event returns a retraction handle that the federate can use to retract the event later

on, is useful for optimistic simulation. In this form of simulation, federates project their

state ahead of the rest of the federation, but they must be prepared to roll that state back

when they receive events whose time stamps lie within the interval that they have already

simulated. The XRTI’s role in this will be to relay retraction messages to the federation

when such a federate, in the process of rolling its state back, must retract events that it

has sent. Also, the methods generated by the proxy compiler will require additional

variants; event-generation methods such as sendX and setX must return retraction

handles, and event-reception methods such as receiveX and xUpdated must include

retraction handle parameters.

The synchronization and save/restore services are similar to each other in

that they require the cooperation of all federates. Synchronization operations allow all

federates participating in an execution to reach a common milestone, or synchronization

point. Once a single federate has requested synchronization by registering a

synchronization point, the RTI notifies all federates that it is awaiting synchronization at

that point. When each federate reaches the point, it notifies the RTI that it has done so.

When the RTI has received such notifications from all joined federates, it sends a

message to the federation indicating that it has reached the synchronization point. Save

and restore operations occur almost identically; one federate requests that the state of the

federation be saved under or restored from a particular label, and the RTI broadcasts the

 104

save or restore request, waiting for responses from all federates before notifying the

federation that the operation is complete. To coordinate these tasks, the XRTI Executive

will have to track synchronization points and save/restore labels, remembering which

federates have achieved which targets.

4. RTI Verification

Once the XRTI provides a complete implementation of the HLA standard, it will

be a candidate for official DMSO verification [DMSO 03, RTI Verification]. The

verification process, which ensures that RTIs conform exactly to the IEEE 1516 standard,

consists of two levels. The first level requires RTI developers to run a series of tests on

their RTIs, each exercising a particular aspect of the RTI’s functionality. The titles of

these tests are “Joining Federations,” “Synchronization Points,” “Save and Restore,”

“Object Discovery,” “Attribute Divestiture and Acquisition,” “Time Advancement,”

“Region Intersection,” and “Management Object Model.” When RTI developers are

satisfied that their RTIs pass the first level of testing, they can submit their RTIs to

DMSO’s RTI Verification Facility for the second level. There, DMSO experts determine

whether or not each RTI satisfies the requirements of the HLA standard, posting the

results on the RTI Verification Status Board.

5. Proposing Extensions to the HLA Community

Along with achieving DMSO certification for the XRTI, the other goal of

interacting with the HLA community is to propose the extensions introduced in this thesis

as additions to the HLA standard. Specifically, if the extensibility afforded by the

mergeFDD method and the interoperability that comes from having a common message

protocol are to be made available to all applications based on the HLA, then the HLA

standard must be extended to include a specification for the mergeFDD method and a

message protocol definition. To assist this process, the XRTI will act as a proof of

concept, demonstrating the feasibility and advantages of implementing the required

changes, as well as a reference implementation, showing other RTI developers how to

conform to the revised standard.

 105

6. Porting/Binding to Other Languages

In order to allow federates written in languages other than Java to use it, the XRTI

must include either bindings or complete ports to those languages. The IEEE 1516.1

specification, for instance, defines interfaces for C++ and Ada as well as for Java. In the

simplest case, to support federates written in C++, it may be sufficient to create bindings

that implement the C++ interface defined by IEEE 1516.1 simply by using the Java

Native Interface (JNI) to invoke the XRTI’s Java methods. Because using the JNI incurs

a performance penalty, however, and because software written in native code tends to

perform better than that written in Java, it may be desirable instead to recreate the XRTI

in C++. In either case, if C++ federates are to use autogenerated proxies like their Java

counterparts, then the XRTI must include a version of the proxy compiler that generates

C++ source files and headers instead of Java classes. Providing support for languages

other than C++, such as Ada, will require similar changes.

7. Integrating Additional Networking Profiles

The client-server networking profile supported by the XRTI prototype is the

simplest profile to implement, but its efficiency and fault-tolerance are limited by its

reliance on a central server, which acts as a bottleneck and a single point of failure. The

hybrid and peer-to-peer profiles will offer several advantages over the client-server

model.

a. Hybrid

The hybrid networking profile will combine the central control offered by

the client-server model with the decentralized, unrestricted messaging associated with the

peer-to-peer model. The hybrid profile will still require federates to connect to an

instance of the XRTI Executive, but the majority of the federates’ communication with

each other will take place through peer-to-peer channels, such as IP multicast groups.

Instead of routing all messages associated with the execution, the XRTI Executive will

assign multicast groups or other communication channels to specific executions and

regions as necessary, subdividing channels when they become too congested and

combining them when their traffic dies down. Apart from this, the XRTI Executive will

 106

still perform most of the roles that it performs in the client-server profile, which means

that although it will no longer be a bottleneck, it will still be a single point of failure.

When the XRTI Executive is shut down, federates will no longer be able to participate in

federation executions.

b. Peer-to-Peer

The peer-to-peer networking profile will eliminate the need to run the

XRTI Executive as a separate application by allowing any federate to act as an executive

when necessary. When each federate initializes its RTI ambassador and thereby connects

to a communication channel, its ambassador will query the channel to determine if other

federates are online. If no federates respond, then the ambassador will establish itself as

the channel’s executive and await the arrival of other federates. The acting executive will

perform the same duties that the XRTI Executive application performs in the client-server

and hybrid profiles: allocating and populating new channels, coordinating save and

restore operations, providing sets of unique identifiers, and so on. When the acting

executive disconnects from the channel, it will have to transfer the executive role to

another federate by using the HLA’s ownership management service to divest ownership

of all executive state. If the acting executive goes offline without warning, the other

federates will have to detect its absence and promote a replacement automatically. This

ability to replace the executive when necessary will prevent the peer-to-peer profile from

having a single point of failure.

The peer-to-peer profile will be the most difficult one to implement, but it

promises to be more versatile and useful than the client-server or hybrid profiles. Aside

from the convenience of not having to run the XRTI Executive, and apart from the

bottleneck reduction and improved fault-tolerance as compared to the client-server and

hybrid profiles, the peer-to-peer profile more closely matches the vision of a fully

distributed network of shared virtual worlds described in the introductory chapter of this

thesis. Realizing that vision may involve implementing reliable multicast protocols on

top of the XRTI’s bootstrap object model, and it may involve using overlay multicast

techniques to compensate for the limited availability of IP multicast. In the end,

 107

 however, for a virtual world network to be as successful as the Internet and the World

Wide Web, it will have to imitate the Internet’s decentralized nature as well as the Web’s

interoperability and extensibility.

C. OBTAINING THE XRTI

All of the software developed and documents written in support of the XRTI

project are available on the World Wide Web through the XRTI Web site [NPSNET 03,

XRTI]. That Web site also includes instructions for contributing to the XRTI’s

development as well as links to the sites of related projects, such as NPSNET-V.

1. Packaging

The XRTI distribution includes a Java archive, xrti.jar, that contains the

compiled XRTI packaged as a Java extension. The extension manifest, included

separately in the distribution as xrti.mf, contains the extension’s name and version

information, as well as a location from which applications can download the extension.

Applications, applets, and other Java classes that use the XRTI can list this extension as a

dependency in their jar manifests in order to instruct extension-aware applications such as

NPSNET-V to download and link the XRTI before continuing to load the dependent

archive.

2. Distribution

Each release of the XRTI distribution consists of two files: an archive containing

the compiled, packaged XRTI along with all documentation and support files (xrti-

devkit.zip), and an archive containing the XRTI’s complete source code (xrti-

source.zip). The first release, which contains the XRTI prototype described in this

thesis, is available for download from a distribution center hosted by the SourceForge

open-source community Web site [OSDN 03].

3. Licensing

SourceForge requires all of its hosted projects to subscribe to an open-source

license. The XRTI’s source code is available under the BSD license, which allows

 108

anyone to modify and redistribute the XRTI code as they see fit, provided that they

include a copy of its license file. The complete text of that file is as follows.

Copyright (c) 2003, The MOVES Institute
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. Neither the name of The MOVES Institute nor the names of its contributors may
 be used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Figure 11. The BSD license as included with the XRTI.

4. Development

SourceForge also hosts the Concurrent Versions System (CVS) repository where

the XRTI’s ongoing development occurs. Developers interested in contributing to the

XRTI are encouraged to contact the author of this thesis in order to find development

tasks that match their talents and to obtain permission to submit changes to the

repository. It is the author’s hope that, with the help of the open-source development

community, the XRTI will grow from a research prototype into a complete and certified

HLA RTI, and finally into a communications infrastructure capable of supporting an

extensive, diverse, and lasting network of shared virtual worlds.

 109

APPENDIX A. GLOSSARY

Attribute. A named, typed element of object state. HLA object models define the
attributes associated with each object class. Object classes inherit their parents’
attributes.

Bootstrap Object Model (BOM). A special FOM that describes the message protocol
payload in terms of HLA data types, and describes basic interactions such as
HLAupdateAttributeValues. A proposed extension to the HLA standard.

Communication ontology. A set of constructs used to share information between
applications. Communication ontologies typically include the constructs’ properties,
their semantic associations, and any relationships that exist between the constructs. HLA
object models represent communication ontologies.

Executive. A server that manages a number of federation executions. Acts as a central
point of control and mediation between federates.

Federate. A federation participant. Federates communicate with one another through
the RTI during the course of a federation execution.

Federation. A distributed simulation involving multiple federates.

Federation execution. A federation instance.

FOM Document Data (FDD). An XML document containing a federation object model
and other federation parameters.

Federation Object Model (FOM). The object model associated with a federation.
Defines the set of object and interaction classes that federates can instantiate during the
course of a federation execution.

High Level Architecture (HLA). A standard for sharing information between federates
during the course of a federation execution.

Interaction. An instance of an interaction class. Contains values for the parameters
defined by that class. Represents an announcement made by a federate.

Interaction class. A type of interaction, as described in an object model. Interaction
classes can have one or more parent classes and can define any number of parameters.

Management Object Model (MOM). A special FOM that describes management-level
constructs and operations within the scope of a single federation execution. Defined by
the HLA standard.

 110

Message. A piece of information transmitted between RTI components. May represent,
for instance, an interaction or an attribute value update.

Message protocol. An application-layer protocol used by the RTI to transmit and
receive messages over the network.

Meta-Federation Object Model (MFOM). A special FOM that describes management-
level constructs and operations outside the scope of any federation execution, such as the
HLAcreateFederationExecution interaction. A proposed extension to the HLA
standard.

Object. An instance of an object class. Contains values for the attributes defined by that
class. Represents an entity in play.

Object class. A type of object, as described in an object model. Object classes can have
one or more parent classes and can define any number of attributes.

Object model. A simulation schema. Describes a set of object and interaction classes.

Object Model Template (OMT). The format to which object models must conform.

Parameter. A named, typed interaction property. HLA object models define the
parameters associated with each interaction class. Interaction classes inherit their
parents’ parameters.

Reflection Object Model (ROM). A special FOM that describes a set of constructs for
representing the FOM itself. A proposed extension to the HLA standard.

Run-Time Infrastructure (RTI). The middleware interface through which federates
communicate during the course of a federation execution.

111

LIST OF REFERENCES

[Adobe 03] Adobe Systems Incorporated. “Adobe Atmosphere.”
[http://www.adobe.com/products/atmosphere/main.html]. April 2003.

[America’s Army 03] America’s Army. “America’s Army: Operations.”
[http://www.americasarmy.com/operations/index.php]. April 2003.

[Blümel 02] Blümel, E., Schenk, M., and Schumann, M. “Distributed Virtual Worlds
with HLA?” Proceedings of the 2002 Fall Simulation Interoperability Workshop.
Orlando, Florida. 8-13 September 2002.

[Bolton 02] Bolton, F. Pure CORBA. Sams Publishing, 2002.

[Brassé 00] Brassé, M. and Kuijpers, N. “Realizing a Platform for Collaborative Virtual
Environments based on the High Level Architecture.” Proceedings of the 2000 Spring
SISO Simulation Interoperability Workshop. Orlando, Florida. 26-31 March 2000.

[Capps 00] Capps, M., McGregor, D., Brutzman, D., and Zyda, M. “NPSNET-V: A
New Beginning for Dynamically Extensible Virtual Environments.” IEEE Computer
Graphics and Applications, 20(5): 12-15 (2000).

[Cazard 02] Cazard, L. and Adelantado, M. “HLA Federates Design and Federation
Management: Towards a Higher Level Object-Oriented Architecture Hiding the HLA
Services.” Proceedings of the 2002 Spring SISO Simulation Interoperability Workshop.
Orlando, Florida. 10-15 March 2002.

[Cox 98] Cox, K. “A Framework-Based Approach to HLA Federate Development.”
Proceedings of the 1998 Fall SISO Simulation Interoperability Workshop. Orlando,
Florida. September 14-18, 1998.

[DMSO 03, RTI] Defense Modeling and Simulation Office. “Runtime Infrastructure
(RTI).” [https://www.dmso.mil/public/transition/hla/rti/]. September 2003.

[DMSO 03, RTI Verification] Defense Modeling and Simulation Office. “RTI
Verification.” [https://www.dmso.mil/public/transition/hla/verification/]. September
2003.

[Dumond 01] Dumond, R. “A FOM Flexible Federate Framework.” Proceedings of the
2001 Spring SISO Simulation Interoperability Workshop. Orlando, Florida. 25-30
March 2001.

[Fischer 01] Fischer, W.D. Enhancing Network Communication in NPSNET-V Virtual
Environments Using XML-Described Dynamic Behavior (DBP) Protocols. Master’s
Thesis. Naval Postgraduate School. Monterey, California. September 2001.

112

[Gamma 95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Givens 00] Givens, B.R. “Positions for and against an Open-Source RTI.” Proceedings
of the 2000 Spring SISO Simulation Interoperability Workshop. Orlando, Florida. 26-31
March 2000.

[Granowetter 03] Granowetter, L. “RTI Interoperability Issues—API Standards, Wire
Standards, and RTI Bridges.” Proceedings of the 2003 Spring SISO Simulation
Interoperability Workshop. Orlando, Florida. 30 March-4 April 2003.

[Hunt 99] Hunt, K. and Graham, J. “OMni™: A FOM and Language Independent
Interface to the RTI.” Proceedings of the 1999 Spring SISO Simulation Interoperability
Workshop. Orlando, Florida. 14-19 March 1999.

[IEEE 1278] The Institute of Electrical and Electronics Engineers, Inc., IEEE 1278-
1993. IEEE Standard for Information Technology—Protocols for Distributed Interactive
Simulation Applications. 18 March 1993.

[IEEE 1516] The Institute of Electrical and Electronics Engineers, Inc., IEEE Std 1516-
2000. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)—Framework and Rules. 11 December 2000.

[IEEE 1516.1] The Institute of Electrical and Electronics Engineers, Inc., IEEE Std
1516.1-2000. IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)—Federate Interface Specification. 9 March 2001.

[IEEE 1516.2] The Institute of Electrical and Electronics Engineers, Inc., IEEE Std
1516.2-2000. IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)—Object Model Template (OMT) Specification. 9 March 2001.

[Kapolka 02] Kapolka, A., McGregor, D., and Capps, M. “A Unified Component
Framework for Dynamically Extensible Virtual Environments.” Proceedings of the
Fourth ACM International Conference on Collaborative Virtual Environments. 30
September-2 October 2002.

[Kapolka 03] Kapolka, A. “A Dynamically Extensible Platform for Browsing, Building,
Publishing, and Hosting Shared Virtual Worlds.”
[http://www.npsnet.org/~npsnet/v/publications/presence2004.pdf]. September 2003.

[Kuhl 99] Kuhl, F., Weatherly, R., and Dahmann, J. Creating Computer Simulation
Systems: An Introduction to the High Level Architecture. Prentice Hall, 1999.

113

[Liles 98] Liles, S.W. Dynamically Extending a Networked Virtual Environment Using
Bamboo and the High Level Architecture. Master’s Thesis. Naval Postgraduate School.
Monterey, California. September 1998.

[Louis Dit Picard 01] Louis Dit Picard, S., Degrande, S., and Gransart, C. “A CORBA-
Based Platform as Communication Support for Synchronous Collaborative Virtual
Environments.” Proceedings of the 2001 International Workshop on Multimedia
Middleware. Ottawa, Canada. 5 October 2001.

[MÄK 03] MÄK Technologies. “MÄK Technologies High Performance RTI.”
[http://www.mak.com/rti.htm]. September 2003.

[Maso 00] Maso, B. “A New Era for Java Protocol Handlers.”
[http://developer.java.sun.com/developer/onlineTraining/protocolhandlers]. May 2003.

[Mullally 03] Mullally, K., Hall, G., Gordon, D., Pemberton, B., and Peabody, C.
“Open, Message-Based RTI Implementation—A Better, Faster, Cheaper Alternative to
Proprietary, API-Based RTIs?” Proceedings of the 2003 Spring SISO Simulation
Interoperability Workshop. Orlando, Florida. 30 March-4 April 2003.

[Myjak 99] Myjak, M.D., Sharp, S.T., and Briggs, K. “Javelin.” Proceedings of the
1999 Spring SISO Simulation Interoperability Workshop. Orlando, Florida. 14-19
March 1999.

[NPSNET 03, NPSNET-V] The NPSNET Research Group. “NPSNET-V.”
[http://www.npsnet.org/~npsnet/v/]. September 2003.

[NPSNET 03, XRTI] The NPSNET Research Group. “XRTI: Extensible Run-Time
Infrastructure.” [http://www.npsnet.org/~npsnet/xrti/]. September 2003.

[Olofsson 03] Olofsson, R. “Java Memory Profiler.” [http://www.khelekore.org/jmp/].
September 2003.

[Oliveira 02] Oliveira, M., Crowcroft, J., and Slater, M. “TreacleWell: Unraveling the
Magic ‘Black Box’ of the Network.” Proceedings of the Sixth World Multiconference on
Systemics, Cybernetics, and Informatics. Orlando, Florida. 14-18 July 2002.

[OSDN 03] Open Source Development Network. “SourceForge.net.”
[http://sourceforge.net/]. September 2003.

[Robinson 00] Robinson, J.L., Stewart, J.A., and Labbe, I. “MVIP—Audio Enabled
Multicast VNet.” Proceedings of the Fifth Symposium on Virtual Reality Modeling
Language. Monterey, California. 21-24 February 2000.

114

[Serin 03] Serin, E. Design and Test of the Cross-Format Schema Protocol (XFSP) for
Networked Virtual Environments. Master’s Thesis. Naval Postgraduate School.
Monterey, California. March 2003.

[Singhal 99] Singhal, S., and Zyda, M. Networked Virtual Environments: Design and
Implementation. Addison-Wesley, 1999.

[SoftPerfect 03] SoftPerfect Research, LLC. “NetWorx.”
[http://www.softperfect.com/products/networx/]. September 2003.

[Sony 03] Sony Computer Entertainment America Inc. “EverQuest.”
[http://everquest.station.sony.com]. April 2003.

[USJFCOM 03] United States Joint Forces Command. “USJFCOM: Millenium
Challenge 2002.” [http://www.jfcom.mil/about/experiments/mc02.htm]. April 2003.

[Wilson 01] Wilson, S., Sayers, H., and McNeill, M.D.J. “Using CORBA Middleware to
Support the Development of Distributed Virtual Environment Applications.”
Proceedings of the 9th WSCG International Conference in Central Europe on Computer
Graphics, Visualization, and Computer Vision. Plzen, Czech Republic. 5-9 February
2001.

115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Michael Zyda
Naval Postgraduate School
Monterey, California

4. Bret Michael
Naval Postgraduate School
Monterey, California

5. Andrzej Kapolka
Naval Postgraduate School
Monterey, California

	I. INTRODUCTION
	A. OVERVIEW
	B. BACKGROUND
	C. PROBLEM STATEMENT
	D. PREVIOUS WORK
	1. Heavyweight Fixed Protocols
	2. Composable Micro-Protocols
	3. Generic Protocols
	4. Middleware Solutions
	CORBA
	HLA

	E. OBJECTIVES
	F. SCOPE
	G. EXPERIMENT
	1. Hypothesis
	2. Test Method

	H. THESIS ORGANIZATION

	II. HIGH-LEVEL DESIGN
	A. DESIGN STRATEGY
	B. IMPLEMENTATION PLATFORM
	C. STANDARDS COMPLIANCE
	D. STANDARDS EXTENSION
	E. NETWORKING CONSIDERATIONS
	1. Topology
	2. Message Channels

	F. BOOTSTRAPPING METHODOLOGY
	G. HANDLES
	H. OBJECT MODELS
	1. Bootstrap Object Model
	2. Meta-Federation Object Model
	3. Reflection Object Model

	I. SOFTWARE COMPONENTS
	1. Proxy Compiler
	2. XRTI Ambassador
	3. XRTI Executive

	III. LOW-LEVEL DESIGN AND IMPLEMENTATION: OBJECT MODELS
	A. OBJECT MODEL TABLES
	B. BOOTSTRAP OBJECT MODEL
	C. META-FEDERATION OBJECT MODEL
	D. REFLECTION OBJECT MODEL

	IV. LOW-LEVEL DESIGN AND IMPLEMENTATION: SOFTWARE COMPONENTS
	PROXY COMPILER
	Type Mappings
	Encoding Streams
	Parameters
	4. Output Files
	a. Data Types
	b. Proxy Ambassador
	Interfaces
	Object Instance Proxies

	B. XRTI AMBASSADOR
	1. Message Channels
	2. Message Flow
	3. Obtaining Handles
	4. Service Mappings
	5. Descriptor Manager

	C. XRTI EXECUTIVE
	1. Message Channel Acceptors
	2. Executive Client Ambassador
	3. Federation Execution Ambassador

	V. INTEGRATION INTO NPSNET-V
	A. PLATFORM OVERVIEW
	1. Component Framework
	a. Module Life Cycle
	Interface Layer
	Configuration and Serialization
	Bootstrapping and Extension

	2. Entity Model
	a. Models
	b. Views
	c. Controllers
	d. Scaffolds

	3. Application Structure
	a. Test Applications
	b. Browser Environment

	B. HLA CONTROLLERS
	1. HLAControllerCore
	2. HLAController
	3. HLAPlatformController

	C. XRTI CONTROLLERS
	1. XRTIControllerCore
	2. XRTIController
	3. XRTIPlatformController

	D. INTEGRATION SUMMARY

	VI. TESTING
	A. TEST APPLICATIONS
	1. HelloWorld
	2. HelloWorldEx

	B. THESIS EXPERIMENT
	1. Overview
	2. Setup
	a. Hardware
	b. Software
	c. Procedure

	3. Hypothesis
	4. Results
	5. Analysis

	VII. CONCLUSION
	A. PROJECT SUMMARY
	B. FUTURE WORK
	1. Widening Conversions
	2. Extensible FOMs in NPSNET-V
	3. Supporting the Complete HLA Standard
	a. Ownership Management
	b. Time Management
	c. Data Distribution Management
	d. Other Services

	4. RTI Verification
	5. Proposing Extensions to the HLA Community
	6. Porting/Binding to Other Languages
	7. Integrating Additional Networking Profiles
	a. Hybrid
	b. Peer-to-Peer

	C. OBTAINING THE XRTI
	1. Packaging
	2. Distribution
	3. Licensing
	Development

	APPENDIX A. GLOSSARY
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

